Editorial / Éditorial

Special Issue: Issues and Challenges of Training Teachers to use Technologies in the 21st Century

Numéro spécial : Enjeux et défis de la formation des enseignants à l’usage des technologies au 21e siècle

Thierry Karsenti, University of Montreal

Introduction

The seven papers in this special issue focus on various aspects of learning technologies and teacher training in Quebec (Canada), including both initial training for future teachers and professional development for more experienced ones. In a few short years, various technologies have made unprecedented inroads into Canada’s elementary and high schools. For example, over 500,000 Canadian students are using tablets in class every day, and over 100,000 are using laptops. This extensive penetration is due as much to the appeal of technology as to its oft-claimed potential for education: that it motivates students to learn.

In recent years, information and communications technology has been gaining significant ground, not just in the day-to-day lives of the young and not-so-young (Endrizzi, 2012), but also at school, where many believe that it is the very future of education (see OECD, 2015). According to Livingstone (2012), technology has transformed society from top to bottom, and particularly in terms of education and what the public expects education systems to deliver. In the Google era, people are deluged with information. Technology has made it possible to view the world through a digital lens, and teachers can access this knowledge at will via interactive smartboards or students’ laptops and tablets. The philosopher Michel Serres (2012) views the exponential growth of technology as an alarming societal shift, equaled only by the invention of writing—against which Socrates strenuously warned us—or perhaps Gutenberg’s printing press. Others fear that the widespread and startling inroads of technology into classrooms will completely destroy so-called traditional interpersonal relations, and that peer relationships will be preferred and fostered over hierarchical ones (Mouissset-Lacan, 2012). Some authors, including Jouneau-Sion and Touzé (2012), consider this a major advantage. They believe that it is the cherished idea of Edgar Morin that enters the classroom: a form of teaching that considers the world in its inclusiveness, that situates students in a climate of autonomy and interaction so
that they can construct relationships between knowledge, between the school and the world, with responsibility for their own learning.

According to Dutta and Bilbao-Osorio (2012), decision makers also see in technology—and with good reason—a solution for improving students’ academic performance. Thibert (2012) sees new ways of learning for young people, notably owing to a permanent connection to the Internet. Others view technology as providing limitless opportunities for formal and informal learning (see Deschryver, 2010; Redecker & Punie, 2011). Further to this last point, we note that recent technosocial changes have led us to rethink what the term “digital divide” means. Normally understood as unequal access to technologies (Warschauer & Matuchniak, 2010), it is beginning to be understood as inequalities that perpetuate a digital underclass of people who lack the skills to use emerging technologies, between those who can put them to good use and those who merely submit to them, between youth who use technologies for learning and those who spend their time gaming or texting for fun. Moreover, despite the significant potential of technology for education, it remains an enormous challenge to introduce it into classrooms (Underwood & Dillon, 2011), when not enough is known about effective pedagogical uses that have real impact on academic performance (Alluin, 2010; Thibert, 2012). In previous studies, for example, we found that young people are using technology mainly for amusement, and not necessarily for learning. Although many studies have focused on the impact (or lack thereof) of technology on education (e.g., Livingstone, 2012), it appears that in 2017 we have arrived at another phase in Canada and elsewhere: we now understand that it is how technology is used for education that counts, not the technology itself (e.g. Chauhan, 2017; Zheng, Warschauer, Lin & Chang, 2016). In agreement with several studies (see Fourgous, 2012; Goulding & Kyriacou, 2008; Norris, Hossain & Soloway, 2012; Paryono & Quito, 2010), it can be said that the teacher (and therefore teacher training) plays a central role in the successful pedagogical integration of technology. Therein lies the motivation for our symposium. Accordingly, we will focus on various aspects of ICT and teacher training in Quebec. The aim of this special issue is to inspire both new and experienced teachers to leverage the full potential of technology for education (see Norris et al., 2012).

The first paper, by Lefebvre Samson, Gareau and Brouillette “TPACK in Elementary and High School Teachers’ Self-reported Classroom Practices of the Interactive Whiteboard”, examines how elementary and high school teachers use the interactive whiteboard for teaching. The study design includes teachers’ self-reported practices as well as the technological pedagogical and content knowledge (TPACK) model, used as a conceptual framework for successful integration of technological tools. Lefebvre et al. collected data from 30 teachers who participated in discussion groups. Overall, the results show a predominance of statements concerning technological pedagogical knowledge (TPK) and technological knowledge (TK), regardless of grade level, gender, or number of years of teaching experience.

The second paper, by Poellhuber, Fournier-St-Laurent and Moukhachen, “Liens entre le modèle CBAM et l’approche d’enseignement dans le contexte de l’adoption d’une classe d’apprentissage actif par des enseignants au postsecondaire” focuses on active learning classrooms (l’apprentissage dans le contexte de l’utilisation de classes d’apprentissage actif – CLAAC). These are learning spaces that are purposefully arranged to allow teachers to make effective use of technologies and active learning. Their multiple case study uses both the CBAM model (Concern-Based Adoption Model) and the ATI model (Approaches to Teaching
Inventory) to describe 15 teachers who are using this type of classroom context in junior college. Their results highlight interest and anxiety profiles that are sometimes surprising, particularly for new users who fit the profile of an advanced user. This profile distribution could be explained by correlations between interest profiles and teaching approaches.

The third paper, by Simard and Karsenti, “Quantitative and Qualitative Inquiry into Future Teachers’ Use of Information and Communications Technology to Develop Students’ Information Literacy Skills” explores how pre-service programs prepare future teachers to use ICT to develop students’ information literacy skills. They conducted a survey with 413 elementary and high school teachers at four universities. Forty-eight student teachers were also interviewed. The findings suggest that, although future teachers receive formal ICT training as part of their program, information literacy is not formally addressed. Nevertheless, they stress that information literacy is perceived to be an important skill for teaching success. In addition to a lack of formal training, future teachers perceive that barriers such as lack of time and access to necessary technologies in the classroom will prevent them from developing students’ information literacy skills for their future professional role.

The fourth paper, by Giroux, Gauthier, Cody, Coulombe, Gagné and Gaudreault “Stratégies de prise de notes à l’aide d’une tablette électronique chez des étudiants du secondaire”, focuses on note-taking by high school students in a 1to1 iPad program. A series of questions related to note-taking was addressed to 294 high school students who use a tablet daily. Their analysis suggest that teachers should play an active role in the appropriation of this tool. Their results show that teachers need to play an active role in fostering student appropriation of the iPad.

Pellerin, Maheux, da Silveira, Allaire and Paul authored the fifth paper, “Un projet de mise en place de la visioconférence en support à la formation des enseignants Inuit : enjeux et bénéfices d’une recherche collaborative en milieu nordique”. In this geographically remote region where the people are bilingual or trilingual, Pellerin set up an experimental videoconferencing system to support training for Inuit teachers in Puvirnituq and Ivujivik, in Nunavik. Over three years of testing, Pellerin et al. experimented with different uses of videoconferencing. The results reveal both benefits and limitations of such systems. The results also show that, despite the harsh northern environment, which made for a challenging experience in many respects, a videoconferencing system is clearly an asset that can support Inuit teacher training: it is a beneficial, effective, and expedient innovation.

The sixth paper, by Collin, Karsenti, Ndimubandi and Saffari, “A Connected Generation? Digital Inequalities in Elementary and High School Students According to Age and Socioeconomic Level”, aimed to better understand the relationship between students’ age and socioeconomic level, and its influence on students’ digital uses. They conducted a quantitative study of 401 elementary and high school students in Quebec. Four independent variables were initially selected: two related to age (actual age and education level) and two others related to the socioeconomic environment (school poverty index and parents’ employment status). The dependent variable that represented students’ digital uses was the number of different technologies they used weekly. They conducted correlation tests followed by a linear regression analysis. Their results highlight that socioeconomic levels appear to have a stronger influence on students’ digital uses compared to age, and explanations for this are proposed.
The final paper, Karsenti’s “The Interactive Whiteboard (IWB): Uses, Benefits, and Challenges. A Survey of 11,683 Students and 1,131 Teachers”, aimed to identify how the IWB is used in Quebec schools and the associated benefits and challenges. It begins with a presentation of the main educational uses of the IWB, followed by the many benefits as perceived by teachers and students. The key challenges that this technology poses for teachers and students are then addressed. Far from calling into question the need to integrate technology in education, the results reveal that certain tools, such as the IWB, may be more complicated and time-consuming to integrate than others. Thus, teachers appeared to have problems with technical aspects of the IWB. Nevertheless, the results also show that the IWB has real educational potential.

References

This work is licensed under a Creative Commons Attribution 3.0 License.
TPACK in Elementary and High School Teachers’ Self-reported Classroom Practices with the Interactive Whiteboard (IWB)

Connaissances abordées dans les pratiques déclarées d’enseignants du primaire et du secondaire qui exploitent le tableau numérique interactif (TNI) en classe

Sonia Lefebvre, Université du Québec à Trois-Rivières
Ghislain Samson, Université du Québec à Trois-Rivières
Alexandre Gareau, Université du Québec à Trois-Rivières
Nancy Brouillette, Université du Québec à Trois-Rivières

Abstract

The interactive whiteboard (IWB) is increasingly used for teaching and learning in the classroom. Nevertheless, the ways that teachers incorporate this tool within their teaching practices remain poorly understood. This paper examines elementary and high school teachers’ self-reported practices with the IWB. The conceptual framework centers on teachers’ self-reported practices as well as the Technological Pedagogical Content Knowledge (TPACK) model, a framework for successful integration of technology into teaching. Data were collected from discussion groups with 30 teachers. Overall, the results show a predominance of technological pedagogical knowledge (TPK) and technological knowledge (TK) regardless of grade level, gender, or years of teaching experience.

Résumé

Le recours au tableau numérique interactif (TNI) à des fins d’enseignement et d’apprentissage à l’école est de plus en plus fréquent. Cependant, les pratiques des enseignants qui exploitent l’outil sont encore mal connues. L’objectif de cette recherche est de rendre compte des connaissances que des enseignants du primaire et du secondaire mobilisent dans leurs pratiques déclarées au regard du TNI. Le cadre conceptuel repose sur des pratiques enseignantes déclarées et des connaissances (modèle TPaCK) à déployer pour assurer une intégration réussie des outils technologiques. Les données ont été recueillies auprès de 30 enseignants participant à des groupes de discussion et traitées selon une analyse de contenu. Globalement, les résultats montrent une prédominance de connaissances technopédagogiques (TP) et technologiques (T) chez les participants, peu importe l’ordre d’enseignement, le genre de l’enseignant ou l’expérience en enseignement.
Introduction

Use of the interactive whiteboard (IWB) is growing, and it is increasingly present in the classroom. However, the fact that the IWB is available does not necessarily mean that it is used, let alone effectively integrated into teaching practices.

Considered an innovation in terms of worldwide classroom use, albeit to varying degrees across nations (BECTA, 2007), the advantages of the IWB, according to Lefebvre and Samson’s 2013 review, include keeping students interested and motivated, helping them understand abstract concepts, and enabling teachers to improve their teaching practices. The IWB can also accommodate a wide variety of needs, such as students’ learning problems (Knight, Browder, Agnello & Lee, 2010), such as the possibility of representing better disciplinary concepts. It is an effective tool for implementing pedagogical changes (Warwick, Hennessy & Mercer, 2011). It is also an effective tool for implementing pedagogical changes (Warwick, Hennessy & Mercer, 2011). Despite these recognized advantages, teachers rarely use the interactive potential of the IWB (Lefebvre & Samson, 2013). What gets displayed on the screen appears to depend mainly on the resources that are available, as well as the teacher’s ability to use the IWB for learning (CEFRIO, 2014). Whereas Al-Qirim (2011) noted a preference for traditional teaching with the IWB, Lewin, Somekh, and Steadman (2008) and Miller and Glover (2002) found that teachers were willing to change their pedagogical practices when they used it. However, many authors acknowledge that limited scientific data is available on the IWB’s pedagogical uses (Gashan & Alshumaimeri, 2015; Karsenti, 2016; Kneen, 2015; Ormanci, Cepni, Deveci & Aydin, 2015; Winzenried, Dalgarno & Tinkler, 2010). Thus, the practices of teachers who integrate the IWB in the classroom remain poorly understood.

According to Mishra and Koehler (2006), effective classroom integration of technologies, which include the IWB, requires an understanding of the interplay between technological, pedagogical, and content knowledge. However, there is a lack of consensus in the literature on the kinds of knowledge that teachers need in order to integrate technological tools (Lefebvre, 2014). For the IWB in particular, this question remains unanswered, as there appears to be limited research in addressing the role of the teacher’s knowledge in connection with classroom use of the IWB.

Consequently, the present study aims to identify the roles of different kinds of knowledge deployed in technology integration, based on teachers’ self-reports of how they integrated technology, and more specifically the IWB, into their teaching practices—as previously suggested by Hsu (2010) and Lefebvre (2014). This type of research is vital in a context where government institutions—in Quebec and elsewhere—are investing large sums of money to purchase this technology and train teachers in its use.

This article provides an overview of the kinds of knowledge that Quebec elementary and high school teachers deploy in their self-reported uses of the IWB. We first present the conceptual grounds and the methodological design, followed by the main findings. We conclude with a discussion of the findings, suggested avenues for future research, and some limitations of the study.
Conceptual Framework

The conceptual framework for this study begins with a definition of the IWB. We then describe the collection, treatment, and analysis of the data on teachers’ self-reported practices, and the kinds of knowledge they employed to effectively integrate technological tools, particularly, the IWB.

Definition of the Interactive Whiteboard (IWB)

The interactive whiteboard (IWB), also called the interactive whiteboard (IW) or the interactive digital whiteboard (IDW), is an electronic whiteboard on which the teacher can display content projected from a computer, tablet, or other source, and which can be used as a touch screen (using a pen or finger) to move content around (Karsenti, 2016). The IWB is usually used for multimedia presentations that can include images, audio, video, and Internet links (Glover & Miller, 2001).

Teachers’ Self-reported Practices

It is difficult to establish an unequivocal definition of what teachers’ practices means. Teachers’ practices include what they do in class when students are present as well as what they do when they prepare their lesson plans and learning activities (Lefebvre, 2005). The art of teaching not only involves conducting teaching activities and interacting with students, but also implementing activities in diverse teaching situations. According to Beillerot (2000), the essential feature of what we call “practice” is its double dimensionality. On the one hand, there are actions, behaviours, and language; on the other hand, there are rules, objectives, strategies, and ideals. Hence, to examine self-reported practices, we must listen to what teachers have to say about their practices (Bru, 2004).

In this study, we focus on practices with the IWB, and more specifically, self-reported practices. To do so, we examine the kinds of knowledge that teachers deployed according to self-reports in discussion groups.

TPACK

The kinds of knowledge that teachers use have been increasingly investigated to address issues of technology integration into education. Many studies have adopted Koehler and Mishra’s (2008) Technological Pedagogical Content Knowledge (TPACK) model. For example, Rosenberg and Koehler (2015) reviewed 193 peer-reviewed TPACK-based articles published in English journals from 2005 to 2013. More recently, Boschman, McKinney, and Voogt (2015), Figg, Jaipal Jamani, and Ciampa (2014), and Walker Beeson, Journell, and Ayers (2014), among others, considered deployed knowledge in their examinations of technology use in diverse settings. We chose the TPACK model because it allows specific targeting of teachers and their actions.

The TPACK model is a framework that identifies three kinds of knowledge used to integrate technology, here the IWB, for purposes of teaching and learning. Technological knowledge (TK) corresponds to knowledge about the IWB, the available resources, and the skills required to use it for various tasks. Pedagogical knowledge (PK) refers to how teaching and
learning occur, including didactics, learning assessment, and classroom management. Content knowledge (CK) refers to knowledge of the subject matter as prescribed by the school curriculum.

The different kinds of knowledge may be combined in multiple ways. For example, technological content knowledge (TCK) corresponds to knowledge about interrelationships between content and the IWB, or ways in which this tool can enhance teaching and learning. Technological pedagogical knowledge (TPK) concerns knowledge of how to use the IWB with students. Pedagogical content knowledge (PCK) refers to consolidated knowledge about the most appropriate teaching methods for different subjects in the education program. According to Koehler and Mishra (2008), successful integration of technological tools requires an understanding of the complex interplay among technological, pedagogical, and content knowledge (TPCK).

Initially constituted of three subsets of knowledge, the model now considers the context (the dotted circle surrounding the kinds of knowledge) in which these kinds of knowledge operate. At school, the context could be the school itself, or the classroom and its dynamics. The context appears to be a significant component for understanding ICT integration (Rosenberg & Koehler, 2015).

This study attempts to answer the following question: what kinds of knowledge do Quebec elementary and high school teachers deploy when they use the IWB, according to their self-reported practices?
Methodology

The research question raised various methodological choices. This section briefly describes the research design, the participants, the data collection, and the data treatment and analysis.

Research Design

This study is part of a large funded research project that examined Quebec teachers’ practices with the IWB at two measurement points (2012 and 2015). This article focuses on one aspect of the project: the kinds of knowledge that teachers used to integrate the IWB into their teaching practices, according to self-reports obtained in phase 1 of the study.

Many authors have applied the TPACK dimensions to quantitatively assess the integration of different technological tools, notably Chai, Koh, and Tsai (2016) and Jen, Yeh, Hsu, Wu, and Chen (2016). In contrast, the present study qualitatively examines the self-reported practices of elementary and high school teachers in connection with IWB use. According to Koh, Chai, and Tsai (2014), a qualitative approach would more adequately capture knowledge from teachers’ discussions of their practices with the IWB compared to a quantitative approach. Accordingly, Dawson, Ritzhaupt, Liu, Rodriguez, and Frey (2013), Jang (2010), and Schmidt-Crawford, Tai, Wang, and Jin (2016) used this type of approach.

Given that the overall research objective was to describe teachers’ practices with the IWB, we therefore adopted a qualitative approach (Ormston, Spencer, Barnard, & Snape, 2014) within a qualitative/interpretive study design in order to grasp the participants’ perspective. Qualitative studies are frequently used to examine specific social situations or phenomena through the eyes of those who actually experience them (Marschall & Rossman, 2011). Here, we focus on how elementary and high school teachers use the IWB in their teaching practices.

Participants

The target population for the project comprised teachers working in both public elementary schools and high schools in the province of Quebec, Canada. About 300 teachers responded to a survey. Of these, 30 teachers agreed to participate in the qualitative phase (16 elementary school, 14 high school; 20 women, 10 men). The inclusion criteria required that the teacher have an IWB in the classroom, or access to one in another classroom, and used it regularly. In demographic terms, the 30 teachers worked in various regions of Quebec, both rural and urban. Their years of teaching experience varied from 4 to 30, with an average of 13 years.

Data Collection

Data for phase one were collected from November 2013 to June 2014. Given the wide geographic distribution of the teachers in the study, it was decided to hold group discussions, including face-to-face talks \((n = 1)\) and synchronous online discussion groups \((n = 7)\). For the synchronous online discussions, we used the Via eLearning & eMeeting Web conferencing tool (https://www.sviesolutions.com/). Although this type of group discussion has certain advantages, it also comes with some limitations (see Guillemette, M., Luckerhoff, J., & Guillemette, F., 2011, for more information). The advantages included the ability to reach participants located...
across geographic regions, present documents to all participants simultaneously, and videotape the discussion sessions for later viewing. The limitations included certain technical difficulties related to limited Internet connections (e.g., response lag) and a higher risk of participant absenteeism.

The interview protocol contained 13 questions designed to elicit teachers’ descriptions of their practices with the IWB in class. Topics included the frequency of IWB use and using the IWB for planning, pedagogy, teaching, and assessment. We also invited the participants to express their concerns about the IWB. Finally, we asked the participants to describe how they had used the IWB in class to carry out an activity, and whether or not they were satisfied with the result, along with the reasons for the result, in their opinion.

Data Treatment and Analysis

The data were subjected to content analysis, as described by Leray (2008), whereby the verbal reports were organized into meaning units according to defined categories. In this case, a meaning unit corresponds to an idea, generally expressed as either part of a sentence, a complete sentence, or several sentences. Seven categories corresponding to the kinds of knowledge in the TPACK model were considered: technological knowledge (TK), pedagogical knowledge (PK), content knowledge (CK), technological pedagogical knowledge (TPK), technological content knowledge (TCK), pedagogical content knowledge (PCK), and technological, pedagogical, and content knowledge (TPCK). Meaning units were double-coded by two team members, and over 90% inter-rater agreement was obtained on 30% of the overall data.

Results

Pamuk (2012) suggests that technology use can be explored in terms of various teaching profiles. Here, we differentiated the results according to gender, grade taught, and teaching experience. First, we present the overall results. The descriptive statistics apply to the overall results, namely the distribution in the teachers’ self-reported practices of the kinds of knowledge deployed according to the TPACK model. Excerpts from the participants’ verbal reports are provided to more explicitly illustrate the results.

Overall Results

The results reveal the proportions of meaning units contained in the teachers’ statements during the group discussions. Figure 2 highlights an overall predominance of meaning units referring to technological pedagogical (TPK) and technological knowledge (TK), with equivalent proportions of 36% of the total meaning units ($n = 392$).
Figure 2. Distribution of teachers’ self-reported kinds of knowledge according to the TPACK model (n = 392).

Note that technical content knowledge (TCK) accounts for 16% of all meaning units, compared to only 9% for technological, pedagogical, and content knowledge (TPCK). Coming last are pedagogical knowledge (PK) and content knowledge (CK), which teachers did not appear to have much to say about, with only 2% and 1% of meaning units, respectively. No meaning units were obtained for pedagogical content knowledge (PCK). In sum, TK and TPK predominated in the teachers’ accounts of their practices with the IWB.

Gender Perspective

The results in terms of gender showed a similar distribution. Figure 3 shows that women as well as men cited mainly TPK (36% vs. 37%) and TK (36% vs. 37%) in connection with their teaching practices with the IWB. However, women tended to mention TCK slightly more often than their male peers did, at 19% and 13%, respectively. For the other kinds of knowledge, the results are similar for women and men: women mentioned TPCK at 8%, with 9% for men. Both women and men appeared to have made little use of PK or CK, at 1% and 2%, respectively. Neither women nor men mentioned using PCK.

Figure 3. Distribution of teachers’ self-reported use of kinds of knowledge by gender (n = 392).
Both women and men generally reported drawing on TK and TPK when they used the IWB. Notably, however, women reported using TCK slightly more than men did.

Elementary School and High School Teaching

Figure 4 provides a detailed breakdown of the meaning units for elementary school teachers: TPK and TK account for 42% and 40%, respectively. The following excerpt is an example of a statement concerning TPK: “It [the IWB] also lets me do differentiated teaching, because I have many more tools at my disposal. So I feel better equipped to help my students according to their specific needs” (Participant 12 – elementary). The next example, provided by an elementary school teacher, testifies to the benefits of his technical knowledge (TK) when using the IWB: “... I usually look for resources, visit sites, get good examples, and find things that we don’t necessarily have in the classroom” (Participant 7 – elementary).

![Figure 4. Distribution of teachers’ self-reported kinds of knowledge by grade level (n = 392).](image)

At identical percentages, TCK and TPCK each accounted for 8% of the meaning units. The following statement illustrates how TCK were combined: “I’ll take an example from Math. I usually look for apps related to the concept that I want to look at. I look for websites and ready-made materials like PowerPoint presentations. I try to put it all together” (Participant 12 – elementary). An example of combined TPCK is: “In second cycle, I work on developing solid shapes in Math class. Each group has a foam cube. We put the cube together, using the app, and we work with the cube on the IWB. The students see the shapes as they take it apart and put it back together, and they can rotate it to view all the sides. They really see all the pieces. After, when I ask them to invent an animal based on a solid shape, they find it easy, because they’ve seen it. They’ve seen it rotated in space” (Participant 10 – elementary). Lastly, only a few meaning units referred to PK or CK, at 1% each, and no statements referred to PCK.

Similar percentages of meaning units were found for high school teachers. In fact, TK accounted for 33% of all meaning units. For example, they referred to creating digital visual support materials or using programs like tébéiciel (a type of program that can be used with the IWB, for example, Activ Inspire and Notebook): “That’s how I make links, Internet links. I insert an icon, so I can make another link, a link to a page in my Word documents. In my case, I
usually use the same things over and over” (Participant 2 – high school). Similarly, TPK is referred to 33% of the time, as shown by the following statement: “Well, me, what I tried, was to enlarge the graphics that I make … so it’s easy to review things. I find that this makes it easier for the students” (Participant 4 – high school). As for TCK, it accounted for 22%. The following excerpt illustrates how some teachers used the IWB to teach specific content: “For fractions and money. They’re given an imaginary sum of money, and then they have to take quarters, loonies [the Canadian one-dollar coin is called a “loonie” because it features a loon, an aquatic bird found in northern countries] and two-dollar coins [called toonies in Canada] to make up the exact amount. We can do this with the IWB. It’s fun! It’s something we could never do before” (Participant 29 – high school). However, TPCK accounted for only 9% of the meaning units, and PK and CK accounted for only 2% each. The next example provides a good illustration of TPCK use: “Me, during the last module I did with my students in electricity, I designed a formative assessment with the IWB using the Activote program, which I’m slowly but surely introducing into my teaching. The students really liked it. They could see how everyone else was doing too. It calculates the voting results, so it’s really a way for them to situate themselves. Many of them liked the activity, and so did I. For a trial run, it worked out pretty well” (Participant 6 – high school). Finally, like the elementary teachers, the high school teachers never referred to PCK.

These results indicate that elementary teachers tended to talk more about their use of TK and TPK compared to their high school counterparts. In addition, both elementary and high school teachers rarely reported using PK, CK, or PCK. However, the main difference that emerges between elementary and high school teachers lies in the use of TCK: elementary school teachers mentioned this only 8% of the time, compared to 22% for high school teachers.

Years of Teaching Experience

With respect to years of teaching experience, teachers who had from 1 to 9 years of experience spoke more about TPK (45%) and TK (41%). The next most-often reported kinds of knowledge, CK and TCK, were identical at 6% each. TPCK accounted for only 2% of the meaning units. Lastly, these teachers made no mention of either PK or PCK.
Teachers with 10 to 19 years of teaching experience referred mainly to their use of TPK and TK, at 37% and 31%, respectively. TCK accounted for 20% of the meaning units, with 10% for TPCK. PK and CK accounted for 2% and 1%, respectively. Lastly, these teachers made no mention of PCK.

Teachers with 20 or more years of teaching experience referred to technological TK 41% of the time and TPK 33% of the time. TCK and TPCK accounted for 15% and 9%, respectively. Fewer references were made to PK and CK, with only 2% and 1%, respectively. Finally, like the other teachers, these more experienced teachers never referred to PCK.

Regardless of years of teaching experience, the participants spoke mainly about TPK and TK. Of note, however, is that CK, including all its combined forms, was mentioned more often by teachers with 10 years or more of experience compared to less experienced teachers.

Discussion

This study examined the kinds of knowledge that elementary and high school teachers reported deploying in order to use the interactive whiteboard (IWB) for teaching. The results show that the teachers referred most often to their use of technological knowledge (TK) and technological pedagogical knowledge (TPK) in self-reported practices with the IWB. Results were similar for women and men, regardless of grade level or years of teaching experience. These findings are in line with the findings of other authors, such as Lefebvre (2014) and Lefebvre, Melançon, and Lefrançois (2012), who investigated ICT integration within the practices of in-service and pre-service elementary teachers and in a teaching team that collaborated on an ICT integration project.

The results revealed that elementary and high school teachers rarely referred to either pedagogical knowledge (PK), content knowledge (CK), or pedagogical content knowledge
(PCK) in isolation. In other words, few teachers spoke about their practices in connection with teaching methods and subject content without referring to technological knowledge at the same time. This would explain the lack or absence of meaning units (discourse) concerning these specific kinds of knowledge. Because the study focused on IWB use, the participants may have felt obliged to talk mainly about the IWB, for a social desirability bias. However, the fact that high school teachers generally specialize in specific subject content while elementary teachers generally teach a wide range of subjects could explain the greater number of references to content knowledge (CK) by high school teachers compared to elementary teachers. High school teachers also appear to broach subject content more from didactical and epistemological perspectives than elementary teachers do. In this perspective, Tzavara and Komis (2015) investigated the particularities of subject area teaching and its underlying epistemological dimension. These authors suggest changing the “P” in the TPACK model to a “D” for didactics to consider subject-specific epistemic axes. A promising avenue for future research would therefore be an exploration of the didactic dimension (Samson, Lefebvre & Gareau, 2015) jointly with the TPACK model.

Furthermore, content knowledge in all its forms, including technological, pedagogical, and content knowledge (TPCK), appears to have been rarely deployed. These results corroborate the findings of Dawson et al. (2013), who found that science and mathematics teachers who integrated ICT into their practices placed little emphasis on TPCK. However, our results contradict the findings of Schmidt-Crawford et al. (2016). There are at least two possible explanations for this difference. First, Schmidt-Crawford et al.’s (2016) case study included only four participating teachers, compared to 30 in our study. Second, the interview protocol differed between the two studies. Schmidt-Crawford et al. (2016) used open-ended questions, which would allow teachers to more freely associate their teaching practices with TPCK, whereas our semi-structured questionnaire as well as the online format of the group discussions could have de-emphasized the participants’ use of TPCK.

Nevertheless, our results reveal that TPCK was used more frequently by teachers with ten or more years of teaching experience compared to less experienced teachers. This suggests that many years of teaching experience, including trial and error, could be required to become comfortable with the three kinds of knowledge, and hence to understand and operationalize the TPACK framework and its dynamics.

Dawson et al. (2013) note the low prevalence of TPCK in professional development programs that are offered to teachers, particularly with respect to the length of activities. According to Jang (2010), mentoring teachers, especially for IWB integration in the classroom, is another promising avenue to consider to obtain a better understanding of the TPACK dynamic: providing peer feedback on teaching practices that integrate ICT would give science (and other) teachers opportunities to deepen their understanding of TPACK. Consequently, studies could consider mentoring programs for both in-service and pre-service teachers.

Finally, female elementary school teachers tended to mention technical content knowledge (TCK) more than their male counterparts, and even more so compared to male high school teachers (Yeh, Lin, Hsu, Wu, & Hwang, 2015). These authors believe that content knowledge depends on the subject being taught as well as the nature of the content. For example, a biology teacher does not apply the subject knowledge in the same way as a physics teacher.
does. Similarly, a first-cycle elementary teacher does not deploy the same subject knowledge as a third-cycle peer does. Accordingly, taking particular subjects and grade levels into account could shed more light on the understanding of TPACK, and hence IWB integration.

Conclusion

To conclude, one of the limitations of this study, as suggested by Samson, Lefebvre, and Gareau (submitted), concerns the use of synchronous online discussion groups. It is harder for researchers to control the flow of the discussion in such situations compared to face-to-face interviews, which would influence the data collection. For example, one or two participants may dominate the discussion, making it difficult for all participants to express their opinions. The majority of the teachers in this study participated in synchronous online discussion groups. The host therefore had to maintain the flow of exchanges and ensure smooth running of the discussion groups despite incomplete control of the participants’ interactions (Guillemette, Luckerhoff & Guillemette, 2011).

Authors’ Note:

This study was funded by the Ministère de l’Éducation, du Loisir et du Sport (MELS) du Québec (2012–2015).

References

Figg, C., Jaipal Jamani, K., & Ciampa, K. (2014). The TPACK teacher game: Gamifying Technological Pedagogical and Content Knowledge (TPACK). In M. Searson & M. Ochoa (Eds.), *Proceedings of Society for Information Technology & Teacher Education International Conference 2014* (pp. 2496-2500). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE)

Authors

Sonia Lefebvre, Ph.D., is Professor in the Department of Education at Université du Québec à Trois-Rivières (UQTR). Her research interest focus on technology and education, preservice technology training and media education. Email: Sonia.Lefebvre@uqtr.ca.

Ghislain Samson is a Professor-Researcher in Science Didactics at Université du Québec à Trois-Rivières (UQTR). He is particularly interested in the links between science, technology and mathematics, working with both teachers and primary and secondary level students. Email: Ghislain.Samson@uqtr.ca.

Alexandre Gareau is a doctoral student in science of Education at the Université du Québec à Trois-Rivières (UQTR). Holder of an Education mastership, he continues his researches about the integration of educationals technologies in the acts of teaching and learning in Quebec elementary and secondary level classes. Email: Alexandre.Gareau@uqtr.ca.

Nancy Brouillette is a doctoral student in science of Education at the Université du Québec à Montréal (UQAM). She is also a pedagogical counsellor in information technology (IT), mathematics, science and technology (S&T). Her interests are related to the pedagogical interventions aimed at favoring the students' interests with regard to science and technology. Email: nabrouillette@csenergie.qc.ca

This work is licensed under a Creative Commons Attribution 3.0 License.
Liens entre le modèle CBAM et l’approche d’enseignement dans le contexte de l’adoption d’une classe d’apprentissage actif par des enseignants au postsecondaire

Relationships between the CBAM Model and the Approach to Teaching Inventory in the Adoption of the Active Learning Classrooms by Postsecondary Teachers

Samuel Fournier-St-Laurent, Collège Ahuntsic
Bruno Poellhuber, Université de Montréal
Madona Moukhachen, Université de Montréal

Abstract

Although research shows that the use of active learning classrooms, specially designed for the use of technologies and active pedagogies, has positive impacts on learning (Beichner et al., 2007), the process by which teachers come to adopt this type of class setup has yet to be explored in depth. This multi-case study uses the Concern-Based Adoption Model (CBAM) and Approaches to Teaching Inventory (ATI) theoretical models to describe the cases of 15 teachers who use this class setup, which is still quite new in the Quebec cégep network. The results reveal CBAM stage of concern (SoC) profiles that are sometimes surprising, especially with regard to new users who display characteristics typical of advanced user profiles. A correlation of the SoC profiles with the teaching approach adopted could account for this profile distribution. Finally, as collaboration is shown to be a dominant factor in the teachers’ interests, its links with the CBAM levels of use (LoU) are discussed.

Résumé

Des recherches montrent que l’utilisation de classes d’apprentissage actif (CLAAC) a des impacts positifs sur l’apprentissage, spécialement dans les classes aménagées pour une utilisation de la pédagogie active et des technologies (Beichner et al., 2007). Cependant, le processus par lequel les enseignants en viennent à adopter ce type de classe semble inexploité. Cette étude fait appel aux modèles CBAM (Concern-Based Adoption Model) et ATI (Approaches to Teaching Inventory) pour décrire 15 cas d’enseignants qui utilisent ce type d’aménagement encore récent pour le réseau collégial québécois. Les résultats montrent des profils d’intérêt et de préoccupation parfois surprenants, en particulier chez les nouveaux utilisateurs qui affichent un

Introduction

La pédagogie active

La réussite des étudiants est une préoccupation importante en enseignement supérieur au Québec et certains cours très échoués représentent des obstacles difficiles à surmonter, ce qui est le cas notamment en mathématiques. Dans ce contexte, la pédagogie active est une alternative ou un complément à l’enseignement magistral, qui semble prédominant dans les établissements d’enseignement postsecondaires (Kushnir, 2013; Poellhuber & Boulanger, 2001). Bien que la pédagogie active reste un terme difficile à cerner clairement, plusieurs auteurs s’entendent sur le fait qu’il désigne des méthodes où les étudiants ont davantage de contrôle sur l’apprentissage et qui misent sur la collaboration et l’étude de problèmes concrets (Bonwell & Sutherland, 1996; Michael, 2006). Les recherches montrent que les méthodes basées sur la collaboration et la coopération ont un impact positif sur l’apprentissage, mais aussi sur la persévérance et la qualité des relations (Braxton, Milern & Sullivan, 2000; Johnson, Johnson & Smith, 1998). Dans une méta-synthèse de méta-analyses sur la méthode la plus populaire associée à la pédagogie active, l’apprentissage par problèmes, Strobel et van Barneveld (2009) arrivent à la conclusion qu’elle donne de meilleurs résultats que l’approche traditionnelle. Plusieurs recommandent donc le recours à des pédagogies misant sur la collaboration entre les étudiants et la résolution de problèmes (Holdren & Lander, 2012; UNESCO, 2011).

Impacts des TIC et apprentissage actif

Les technologies de l’information et de la communication (TIC) ont aussi le potentiel d’influencer favorablement la motivation et l’apprentissage. Le débat sur l’efficacité des TIC qui a fait rage pendant des années, par exemple entre Kulik et Kulik d’une part, et Clarke, d’autre part (Clark, 1994; Kulik & Kulik, 1991), se tourne maintenant vers les conditions dans lesquelles les TIC peuvent avoir des effets bénéfiques. À cet égard, de récentes méta-analyses et méta-synthèses indiquent que les TIC ont des impacts sur la performance scolaire et les attitudes pouvant aller jusqu’à une taille de l’effet de 0,5 écart-type dans le contexte de l’apprentissage actif et collaboratif (Schmid et al., 2014; Tamim, Bernard, Borokhovski, Abrami & Schmid, 2011).

Aménagement adapté

Afin de favoriser le recours à la pédagogie active et pour contrer les limites des aménagements de type amphithéâtre, Beichner a mis sur pied le projet SCALE-UP, en imaginant un environnement qui facilite le recours à la pédagogie active et aux TIC dans de grands groupes : les *active learning classes* ou classes d’apprentissage actif (CLAAC) (Beichner et al., 1999). Ces classes sont constituées d’un mobilier formé de tables rondes, de surfaces de projection et de travail aux murs (par exemple des tableaux blancs interactifs). Les équipes
Les effets des classes d’apprentissage actif

Dans une vaste étude comparative (plus de 16 000 étudiants dans quatre universités américaines), le recours à la pédagogie active et aux TIC dans l’enseignement de la physique s’est avéré plus efficace qu’un enseignement composé essentiellement d’exposés magistraux et d’exercices pratiques dans des locaux traditionnels (Beichner et al., 2007). Les résultats saillants sont un meilleur taux de présence en classe (plus de 90%), une meilleure attitude générale des étudiants, des taux d’échec de deux à six fois moindres et un gain doublé dans la compréhension de concepts. Des résultats similaires ont été par la suite obtenus par d’autres équipes de recherche (Charles, Lasry & Whittaker, 2011; Dori & Belcher, 2005).

Bien que ces résultats soient encourageants, les études sur les CLAAC ont surtout focalisé sur les étudiants, occultant le point de vue des enseignants. Les chercheurs Charles, Lasry et Whittaker (2011) ont amorcé ce volet enseignant en observant qu’une approche pédagogique traditionnelle dans une CLAAC mène à des résultats plus faibles qu’avec la pédagogie active.

Aussi, les quelques données rapportées par les chercheurs indiquent que l’enseignement dans une CLAAC ne se fait pas facilement. L’adaptation des cours nécessaire pour obtenir des activités majoritairement axées sur l’utilisation des TIC dans un contexte d’apprentissage actif est perçue comme une entreprise d’envergure, voire même une réforme (Dori & Belcher, 2005). La complexité de la planification pédagogique dans ce contexte représente un défi de taille qui exige beaucoup de temps (Beichner et al., 2007) et des compétences spécialisées. De plus, un enseignant qui s’engage dans ce processus peut s’attendre à une période d’inconfort associée au passage d’un rôle de transmetteur des savoirs à un rôle de soutien aux étudiants dans leurs travaux (Charles et al., 2011). Ces obstacles sont semblables à ceux identifiés dans la littérature au sujet de l’intégration de plusieurs approches de la pédagogie active (Albanese & Mitchell, 1993) ou des TIC (Larose & Karsenti, 2005).

Dans les collèges et universités québécois, on observe depuis quelques années un accroissement important des projets d’aménagements de CLAAC (CLAAC, 2015; Kingsbury, 2012). Le caractère récent des locaux et les défis qu’ils peuvent poser font de l’utilisation d’une CLAAC une véritable innovation pour les enseignants. En effet, les enseignants qui décident d’œuvrer dans une CLAAC font face à plusieurs défis liés à l’adaptation à ce nouveau contexte, notamment sur les plans de la posture, des approches pédagogiques à adopter et de l’intégration des TIC. Cette situation constitue réellement pour eux une innovation double sur les plans pédagogique et technologique. Le coût important des aménagements de ce type renforce aussi l’importance de guider adéquatement les enseignants et les étudiants qui les utilisent. Dans le présent article, nous nous intéressons au processus d’adoption de cette innovation par des enseignants.
Cadre conceptuel

En éducation, plusieurs cadres théoriques sont disponibles pour aborder la question de l’adoption d’une innovation. Le concept d’innovation est polysémique, mais la notion de changement dans le but d’améliorer une situation problématique demeure centrale au concept, l’innovation représentant pour certains une réponse à des problèmes (Altet, 2002, citée dans Dejean, 2006), un processus de changement visant l’amélioration (Cros, 1998), une amélioration visant l’apprentissage des étudiants comme des enseignants (Dejean, 2003).

Du côté des modèles théoriques de l’innovation, le plus connu est sans conteste celui de Rogers, qui a élaboré dès 1950 un modèle qui permet d’identifier les étapes et facteurs critiques dans l’adoption d’une innovation. Plusieurs critiques ont été faites à ce modèle qui avait tendance à considérer l’innovation dans une perspective « diffusoniste » inspirée du courant rationaliste où elle était diffusée aux utilisateurs à partir du haut de la pyramide hiérarchique. À l’inverse, d’autres modèles, comme le CBAM (Concern Based Adoption Model) ou le modèle de Fullan (2007), considèrent plutôt que l’innovation est un processus de transformation systémique qui engage d’abord les principaux utilisateurs de l’innovation (ici les enseignants). Une telle perspective est plus appropriée, car l’innovation sur laquelle nous nous centrons ici ne consiste pas en une opération de changement planifié du haut vers le bas, mais plutôt d’une expérience où les principaux acteurs (enseignants) sont conviés à définir eux-mêmes les caractéristiques principales de l’innovation, étant responsables de faire les choix pédagogiques et technologiques qu’ils estiment les meilleurs.

Le modèle CBAM

C’est ainsi que nous avons retenu le modèle CBAM de Hall et Hord (2015), qui adopte une perspective systémique et développementale tout en mettant l’accent sur le fait que l’innovation constitue un processus coconstruit avec les principaux acteurs plutôt qu’un résultat clairement identifié au départ. Ainsi, le CBAM accorde une importance toute particulière aux phases de développement et de mise en œuvre (Implementation), qui précèdent les phases de déploiement à grande échelle, ce qui correspond tout à fait au contexte du présent projet. Le CBAM a été utilisé dans plusieurs cas d’implantation d’innovations pédagogiques ou technologiques (Deaudelin et al., 2005; Schoepp, 2004) et il a été mis à jour récemment (Hall & Hord, 2015). Ayant été éprouvé et validé dans un grand nombre de recherches, ce modèle offre aussi une instrumentation méthodologique claire, fort utile dans le présent projet.

L’approche générale du CBAM est de s’intéresser aux préoccupations et intérêts des premiers intéressés par l’innovation étudiée par le biais du questionnaire sur les stades d’intérêt ou de préoccupation (Stage of Concern ou SoC). Les stades de préoccupations représentent l’importance personnelle et l’intérêt porté envers l’innovation, c’est-à-dire dans quelle mesure chaque acteur se sent « concerné » par celle-ci. Ce concept se rapproche de la perception motivationnelle de valeur (Pintrich, 2003), et comporte des composantes cognitive et affective. Selon la théorie, les individus passent par différents stades d’intérêt et de préoccupation et vont généralement s’intéresser à l’innovation avant de commencer à l’adopter. Le tableau 1 représente les différents stades d’intérêt et de préoccupation selon l’approche du CBAM.
Tableau 1

Stades d'intérêts et de préoccupations selon Hall et Hord (2015)

<table>
<thead>
<tr>
<th>Stades de préoccupation</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Conscience</td>
<td>L'individu manifeste peu de préoccupation ou d'engagement envers l'innovation. Il est intéressé et préoccupé par autre chose.</td>
</tr>
<tr>
<td>1. Information</td>
<td>L'individu manifeste un intérêt pour en savoir plus sur l'innovation; il se renseigne sur les caractéristiques générales, les effets et ce que requiert son utilisation.</td>
</tr>
<tr>
<td>2. Personnel</td>
<td>L'individu ne sait pas s'il comprend bien les exigences de l'innovation, s'il peut les remplir et quel est son rôle dans l'innovation. Il analyse son rôle en fonction de la structure de l'organisation.</td>
</tr>
<tr>
<td>3. Gestion</td>
<td>L'attention est concentrée sur les processus et les tâches pour utiliser l'innovation et sur la meilleure façon d'utiliser l'information et des ressources (organiser, programmer le temps requis, etc.).</td>
</tr>
<tr>
<td>4. Conséquence</td>
<td>L'attention est portée sur l'impact de l'innovation sur ceux à qui elle est destinée (pertinence pour les élèves, évaluation des résultats et changements constatés chez les élèves).</td>
</tr>
<tr>
<td>5. Collaboration</td>
<td>L'accent est mis sur la coordination et la coopération avec les autres.</td>
</tr>
<tr>
<td>6. Refocalisation</td>
<td>L'individu explore d'autres utilisations de l'innovation.</td>
</tr>
</tbody>
</table>

Les niveaux d’utilisation (*Level of Use* ou LoU) du CBAM reposent sur l’idée que l’adoption effective d’une innovation est caractérisée par les comportements des utilisateurs (Hall, Dirksen & George, 2006), par exemple par les actions concrètes posées en classe par les enseignants. Le profil d’utilisation sera différent si, par exemple, un enseignant utilise un outil d’enseignement de manière routinière ou s’il organise régulièrement des rencontres avec ses collègues pour discuter de la façon d’améliorer l’utilisation de l’outil.

Approches d’enseignement

Le contexte d’enseignement dans une classe d’apprentissage actif est susceptible d’entraîner des changements dans l’approche pédagogique des enseignants. Le modèle Inventaire des approches d’enseignement (*Approaches to Teaching Inventory* ou ATI) est issu d’une démarche visant à documenter les approches d’enseignement au niveau universitaire et d’établir des liens quantitatifs entre la façon dont les enseignants enseignent et plusieurs indices de l’apprentissage des étudiants (Trigwell & Prosser, 2004). Le modèle ATI comprend des éléments clés des différentes approches observées chez les enseignants disposés sur deux échelles. L’approche centrée sur l’enseignant est orientée vers la transmission des faits, habiletés, notes de cours et concepts disciplinaires. Le contrôle de l’enseignant sur l’apprentissage est élevé pour cette approche. L’approche centrée sur les étudiants est orientée vers des activités où les étudiants ont des occasions de discuter et de débattre des concepts étudiés. Cette échelle introduit...
aussi l’importance des connaissances antérieures des étudiants et la possibilité qu’ils identifient leurs propres ressources d’apprentissage.

Contexte et objectif du projet

Le principal objectif de cette recherche est de mieux comprendre comment les enseignants du réseau collégial s’approprient l’innovation que représente l’utilisation d’une CLAAC, c’est-à-dire l’utilisation du local et des approches pour lesquelles il est adapté. À cette fin, il nous semblait pertinent de pouvoir dresser un portrait initial de plusieurs utilisateurs de ce type de classe à l’aide d’outils du modèle CBAM. Le recrutement de participants qui ont déjà une expérience antérieure d’une CLAAC n’a pas été écarté, car cela offrait une occasion de comparer, sur une base qualitative, leurs résultats avec ceux d’utilisateurs novices.

Méthodologie

Contexte institutionnel et participants recrutés

Un total de 15 enseignants issus de cinq établissements du réseau collégial québécois ont été recrutés parmi les utilisateurs des CLAAC de ces établissements. Des informations sur les disciplines et les effectifs par établissement sont présentées au tableau 2. Des considérations éthiques limitent la divulgation de détails additionnels sur chaque cas particulier. Les participants forment un ensemble hétérogène de cas possédant une expérience variée avec la pédagogie active. Ils enseignent dans six disciplines différentes à un ou plusieurs groupes d’étudiants.

Tableau 2

Informations additionnelles sur les disciplines et effectifs par établissement

<table>
<thead>
<tr>
<th>Établissements</th>
<th>Disciplines impliquées</th>
<th>Nombre d'enseignants</th>
<th>Nombre de groupes d'étudiants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuntsic</td>
<td>Biotechnologie, Économie, Littérature</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Rosemont</td>
<td>Physique</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>St-Félicien</td>
<td>Mathématiques</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Terrebonne</td>
<td>Littérature, Mathématiques, Philosophie</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Trois-Rivières</td>
<td>Littérature, Mathématiques, Physique</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Note. Un groupe d’étudiant est en moyenne composé de 31 personnes.
Une condition importante convenue avec les enseignants au début du projet était de planifier suffisamment de séances dans la CLAAC de façon à ce qu’elles représentent au moins 50% du temps normalement consacré aux cours théoriques.

Les aménagements de type CLAAC utilisés possédaient tous les caractéristiques de base attribuables à une classe d’apprentissage actif mentionnées plus haut. On retrouvait aussi dans tous les locaux des ordinateurs portables, dans la proportion d’un ordinateur pour trois étudiants jusqu’à un ordinateur par étudiant. Les différences entre les aménagements résident dans les autres TIC mis à la disposition des étudiants, par exemple un projecteur attribué à chaque équipe ou encore la possibilité de projeter le contenu de l’écran d’un ordinateur d’un étudiant vers les projecteurs numériques de la classe. Aussi, le nombre de tableaux (pour écrire sur les murs) varie entre deux et huit dans les CLAAC utilisées par les enseignants.

Outils du CBAM

Le CBAM offre essentiellement trois outils méthodologiques : un questionnaire sur les stades d’intérêt et de préoccupation (SoC), une entrevue dirigée sur les niveaux d’utilisation (LoU) et une carte de configuration de l’innovation. La carte de configuration de l’innovation étant davantage un outil de communication qu’un instrument de mesure, ce sont les deux premiers outils que nous avons mobilisés.

Questionnaire sur les stades d’intérêt ou de préoccupation

Le questionnaire sur les SoC a été élaboré à partir des travaux de Fuller dans les années 1960. En fonction de plusieurs facteurs liés à leur condition (par exemple, expérience en enseignement), Fuller a identifié des intérêts et des préoccupations chez les enseignants que l’on peut regrouper en catégories distinctes correspondant à un stade du changement (voir tableau 1). Un utilisateur qui amorce un changement aura, par exemple, un intérêt à s’informer sur ce dernier. Plus tard, il se préoccupera de la façon d’intégrer efficacement le changement à ses autres tâches d’enseignement (George, Hall & Stiegelbauer, 2013). Le questionnaire SoC publié comprend 35 questions qui relèvent de sept stades d’adoption d’une innovation : conscience (0), information (1), personnel (2) gestion (3), conséquences (4), collaboration (5) et réorientation (6). Les répondants indiquent sur une échelle de 0 à 7 leur degré d’accord avec les énoncés et les scores de chaque stade permettent de dresser des profils d’intérêts. Les profils indiquent en retour les pistes à suivre pour soutenir l’adoption de l’innovation.

Les enseignants ont rempli le questionnaire SoC au début du semestre selon le processus établi dans le guide d’utilisation de l’outil SoC (George, Hall, & Stiegelbauer, 2013). L’innovation présentée aux participants est l’utilisation d’une classe d’apprentissage actif, une expression définie par le recours à la pédagogie active et aux TIC dans un local adapté. Les résultats bruts au questionnaire SoC ont été traités en additionnant les scores des questions associées à chaque stade, puis en transformant ces sommes en indices d’intensité relative sur une échelle allant de 0 à 100 (Hall et al., 2006). Les indices ont ensuite été disposés dans un graphique, de façon à former des profils SoC pour chaque enseignant. Les profils individuels ont enfin été interprétés et comparés aux profils de référence du guide d’utilisation de l’outil SoC afin de faciliter la formation de groupes de profils.
Entrevue sur les niveaux d'utilisation

L’entrevue de type LoU permet de déterminer où se situe un utilisateur dans l’utilisation effective de l’innovation, en sondant les comportements caractéristiques à l’un ou l’autre des huit niveaux : non-utilisation (0), orientation (1), préparation (2), mécanique (3), routine (4A), redéfinition (4B), intégration (5) et renouvellement (6). L’attribution des niveaux se fait en fonction de points de décisions dans l’entrevue (voir figure 1), de sorte que la première question vise à distinguer si l’utilisateur utilise l’innovation (niveau 3 et plus) ou non (niveau 0, 1 ou 2). La deuxième question de l’entrevue porte ensuite sur un deuxième point de décision et ainsi de suite, jusqu’à l’obtention d’un niveau final.

Au terme du semestre de 15 semaines de cours, les participants ont été invités à une entrevue semi-dirigée basée sur l’outil LoU (Hall et al., 2006). L’entrevue contenait également des questions portant sur les sources d’information utilisées, les effets perçus de l’utilisation de la CLAAC sur eux et sur les étudiants, les occasions de collaboration et les changements passés et à venir. Ces questions ont amené les participants à discuter de leurs préoccupations en lien avec l’utilisation de la CLAAC.

Une stratégie de codage a été mise en place pour établir les niveaux d’utilisation en utilisant les points de décision du modèle LoU comme codes. Deux codeurs ont d’abord indépendamment identifié les segments leur permettant de justifier chaque point de décision, puis ont attribué un niveau d’utilisation à chaque cas. L’accord interjuge a été effectué selon le

Figure 1. Points de décision (branching) utilisés dans l’entrevue LoU.
guide du LoU sur les niveaux attribués pour l’ensemble des cas avec un résultat de 79 %. Les niveaux finaux ont été déterminés après discussion sur les points de divergence.

Inventaire des approches d’enseignement (ATI)

Le questionnaire associé au modèle ATI offre un avantage clair pour une étude où l’on cherche à voir si l’approche d’enseignement est davantage pédocentrée ou magistrocentrée. Comme la version la plus récente du questionnaire ATI était en anglais (Trigwell, Prosser & Ginns, 2005), nous avons réalisé une validation transculturelle : une traduction professionnelle des 22 items du questionnaire a d’abord été faite vers le français selon l’approche suggérée par Vallerand (1989). Les énoncés en français ont ensuite été traduits vers l’anglais par un autre traducteur. Les deux versions des énoncés en anglais ont été comparées pour identifier des pertes de sens. Les énoncés en français ont finalement été proposés à un petit groupe de répondants (enseignants) afin d’assurer la clarté des questions, puis à un échantillon de 124 enseignants du réseau collégial. L’analyse factorielle multiple a révélé la présence d’items associés aux deux échelles ou avec un indice très faible (< 0,4). Pour ces raisons, les énoncés 2, 10, 15, 19 et 25 ont été éliminés. Le résultat est un questionnaire comportant huit items pour l’échelle centrée sur l’enseignant (alpha de Cronbach = 0,733) et neuf items pour l’échelle centrée sur les étudiants (alpha de Cronbach = 0,830).

Pour chaque enseignant, les scores des questions ont été regroupés selon leur appartenance à l’une des deux échelles d’approche d’enseignement. Il en résulte, pour chaque enseignant, une valeur pour chaque échelle allant de 1 à 7.

Résultats

Stades d’intérêts et de préoccupations

Les résultats sur les stades de préoccupations ont été transformés en intensités relatives selon la démarche d’analyse du SoC présentée plus haut. Un nombre élevé dans le tableau 3 indique une intensité d’intérêt et de préoccupation forte pour le stade correspondant.

Tableau 3

Intensités relatives des stades d’intérêts et de préoccupations des enseignants

<table>
<thead>
<tr>
<th>Cas</th>
<th>Intensités relatives des stades de préoccupation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
</tr>
</tbody>
</table>
Intensités relatives des stades de préoccupation

<table>
<thead>
<tr>
<th>Cas</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>40</td>
<td>31</td>
<td>47</td>
<td>19</td>
<td>98</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>87</td>
<td>80</td>
<td>80</td>
<td>73</td>
<td>33</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>69</td>
<td>72</td>
<td>56</td>
<td>43</td>
<td>84</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>51</td>
<td>45</td>
<td>30</td>
<td>19</td>
<td>68</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>34</td>
<td>5</td>
<td>15</td>
<td>63</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>55</td>
<td>51</td>
<td>5</td>
<td>23</td>
<td>33</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>84</td>
<td>45</td>
<td>30</td>
<td>92</td>
<td>98</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>55</td>
<td>80</td>
<td>72</td>
<td>98</td>
<td>38</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>Moyenne</td>
<td>41</td>
<td>66</td>
<td>56</td>
<td>52</td>
<td>52</td>
<td>75</td>
<td>53</td>
</tr>
</tbody>
</table>

Note. 0 = conscience ; 1 = information ; 2 = personnel ; 3 = gestion ; 4 = conséquences ; 5 = collaboration ; 6 = réorientation

La moyenne des scores d’intensité relative indique que les participants ont un intérêt élevé pour la recherche d’informations en lien avec la CLAAC. Ils seraient donc actifs, dans l’ensemble, dans la recherche de renseignements sur la CLAAC et auraient un intérêt à en savoir davantage.

La collaboration constitue le stade pour lequel les participants se sentent le plus « concernés », avec une moyenne de 75 pour l’ensemble des participants. L’intensité relative est notamment très élevée (>90) chez six enseignants et la valeur la plus faible est de 44. En entrevue, la collaboration est perçue positivement par les enseignants qui y voient des occasions de miser sur les forces des uns et des autres, de découvrir de nouvelles idées et d’obtenir un soutien : « Quand on dialoguait, je lui demandais beaucoup comment ça se passait de son côté. Moi, j’en ai [des étudiants] qui capotent un peu. Toi c’est comme ça ? » (cas 15); ou encore : « il est vraiment très fort là-dedans [les TIC], c’est incroyable. [...] Ah wow ! Il a été une source de bonne inspiration » (cas 7). Collaborer avec les collègues permet d’aller plus loin que si l’on avait été seul: « on va mettre des choses en commun pour créer quelque chose qui nous dépasse » (cas 11).

La collaboration entre enseignants se révèle utile dans la recherche de solutions aux défis que présente le fait d’enseigner dans une CLAAC. Échanger sur ce qui fonctionne bien et moins bien permet d’avoir des exemples de réussite et de pallier les difficultés vécues. Plusieurs enseignants ont aussi mentionné avoir réalisé régulièrement des activités formelles d’échanges (cas 1, 6, 7, 8, 13, 14, 15 et 16). Ceux-ci en ont davantage vanté les mérites que les autres. Selon un enseignant, les principales forces d’une collaboration réside en un effort moindre, une appropriation plus rapide et une motivation plus grande :

 Ça te permet de toujours essayer des choses nouvelles parce que le coût pour changer ton cours est diminué de moitié. Donc là, si tu veux tenter des choses nouvelles et que tu es toujours avec l’autre qui te permet de porter un jugement différent sur ta pratique. De un, ça te permet d’innover beaucoup plus, ce qui motive les deux. C’est un cercle vertueux.
Tu essaies de nouvelles choses, c'est l'fun, tu le proposes, ça fait moins de tâches. De deux, quand tu expérimentes quelque chose, ça va beaucoup plus vite se l'approprier. (cas 1, profil E)

En tenant compte des préoccupations les plus fortes (pics) et les plus faibles (creux) pour chaque enseignant, des regroupements de cas ont été effectués. Cette opération a dégagé six profils d’utilisateurs de la CLAAC qui sont décrits en se basant sur les profils de référence proposés par George, Hall et Stiegelbauer (2013). Pour faciliter la comparaison, ces derniers sont aussi affichés dans les figures montrant les profils des stades de préoccupation des utilisateurs de la CLAAC.

Profil A.

![Figure 2. Profil A des stades de préoccupation.](image)

Le profil A est caractérisé par une forte intensité au stade « conscience » et d’une intensité plus faible au stade « information ». Selon le guide du CBAM, ce résultat pourrait se traduire par un engagement faible des utilisateurs envers l’innovation (George, Hall & Stiegelbauer, 2013). Les intensités relatives diminuent pour les stades suivants jusqu’à un creux vers le stade « conséquences » ou « collaboration ». Le profil A s’apparente au profil d’enseignants qui n’utilisent pas ou très peu l’innovation. La hausse marquée (>10 points) au
stade « réorientation » pour les cas 2 et 5 pourrait être causée par la présence d’idées pour remplacer la CLAAC.

Profil B.

![Graphique montrant les profils des stades de préoccupation pour les cas 4, 7, 10 et 13.](image)

Figure 3. Profil B des stades de préoccupation.

Le profil B est caractérisé par des niveaux d’intensité plus forts aux stades « information » et « personnel ». La faible intensité du stade « conscience » par rapport aux autres préoccupations indique que les enseignants pourraient avoir une attitude engagée face à l’innovation. Les valeurs des premiers stades s’apparentent à celles d’utilisateurs débutants avec un intérêt pour en savoir davantage. Cependant, la baisse de préoccupation normalement observée aux derniers stades est remplacée par une hausse marquée pour la collaboration. La combinaison des pics aux stades « information » et « collaboration » pourrait signifier un intérêt pour savoir ce que les autres utilisateurs font, sans nécessairement chercher à mener la collaboration.
Profil C.

Figure 4. Profil C des stades de préoccupation.

Le profil C comprend les deux cas dont le pic le plus important se situe au stade « gestion ». Ce stade désigne les aspects pratiques de l’utilisation d’une CLAAC (par exemple la gestion du temps et des ressources). Le pic est accompagné d’une hausse au stade « réorientation », indiquant que les enseignants ont probablement des idées sur la façon de changer leur utilisation de la CLAAC pour répondre à ces problématiques. La valeur élevée du stade « information » par rapport aux autres stades supporte l’idée de l’ouverture face à la recherche de solutions.
Figure 5. Profil D des stades de préoccupation

Le profil D contient des cas variés qui ont cependant tous un niveau d’intensité élevé au stade « collaboration », dépassant de plus de 20 points la valeur de leur deuxième stade le plus élevé. Ces cas annoncent un fort potentiel pour les échanges entre les utilisateurs d’une CLAAC. Une différence se situe cependant aux stades « conscience » et « information » où le cas 15 montre un profil qui s’apparente davantage à celui d’un non-utilisateur alors que les autres cas ont des préoccupations caractéristiques d’utilisateurs plus engagés dans l’adoption de l’innovation. Une autre différence se situe au stade « gestion » où le cas 8 montre une hausse, indiquant une préoccupation quant aux aspects pratiques de l’utilisation de la CLAAC et la gestion des ressources.
Figure 6. Profil E des stades de préoccupation.

Le profil E regroupe deux cas dont les valeurs aux stades 3 à 7 s’apparentent à celles d’utilisateurs expérimentés ayant un fort intérêt pour les conséquences de leur usage des CLAAC. Cependant, un pic est observé au stade « information ». Ce profil correspond à celui d’utilisateurs avancés ayant un grand intérêt pour les informations qui leur permettent de mieux comprendre les impacts de leur utilisation de l’innovation. L’intérêt pour la collaboration est cohérent avec cette recherche de solutions. Les valeurs plus faibles aux stades « conscience », « gestion » et « réorientation » sont aussi cohérentes avec l’idée d’utilisateurs confiants et bien engagés dans le processus d’adoption de la CLAAC.
Profil F.

Figure 7. Profil F des stades de préoccupation.

Le dernier profil est formé d’un cas dont les valeurs des derniers stades de préoccupation s’apparentent à celles d’un utilisateur expert. Les valeurs des premiers stades sont cependant plus élevées que le profil de référence retrouvé dans le guide de George, Hall et Stiegelbauer (2013), indiquant qu’un intérêt persiste pour les premiers stades.

Niveaux d’utilisation

Les entrevues individuelles réalisées avec les enseignants à la fin du semestre ont permis de déterminer leurs niveaux d’utilisation d’une CLAAC et de mieux comprendre leurs perceptions de cette utilisation. Les enseignants ont aussi indiqué depuis combien d’années ils ont majoritairement recours à la pédagogie active ainsi que leur expérience antérieure avec l’utilisation d’une CLAAC. Il faut souligner que cette expérience antérieure est d’environ deux semestres dans la plupart des cas, mais qu’elle s’élève jusqu’à six semestres.

Le tableau 4 présente les résultats des entrevues et indique, pour chaque cas, le profil SoC associé. Une description sommaire et des extraits d’entretiens sont ensuite présentés pour chaque niveau.
Tableau 4

Niveaux d'utilisation LoU, profils Soc et expériences antérieures des enseignants

<table>
<thead>
<tr>
<th>Cas</th>
<th>Expérience antérieure CLAAC</th>
<th>Expérience avec l'apprentissage actif (années)</th>
<th>LoU</th>
<th>Profil SoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>oui</td>
<td>3</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>non</td>
<td>1</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>non</td>
<td>1</td>
<td>4A</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>non</td>
<td>0</td>
<td>4A</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>non</td>
<td>1</td>
<td>4B</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>oui</td>
<td>4</td>
<td>4B</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>non</td>
<td>1</td>
<td>4B</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>non</td>
<td>1</td>
<td>4B</td>
<td>B</td>
</tr>
<tr>
<td>17</td>
<td>non</td>
<td>≥5</td>
<td>4B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>non</td>
<td>≥5</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>non</td>
<td>1</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>14</td>
<td>oui</td>
<td>≥5</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>oui</td>
<td>≥5</td>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>oui</td>
<td>3</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>non</td>
<td>3</td>
<td>N/A</td>
<td>E</td>
</tr>
</tbody>
</table>

Niveau 3. Le niveau d'utilisation 3 correspond à une utilisation dite « mécanique » de l'innovation. L’enseignant est alors concentré sur des tâches à court terme et effectue des changements axés sur ses besoins. Ce contexte amène l’enseignant à maîtriser petit à petit l’innovation ou encore à se limiter à une utilisation superficielle.

Les enseignants associés au niveau 3 mentionnent dans les entrevues plusieurs défis à relever pour utiliser une CLAAC, en particulier la difficulté de transmettre les consignes aux étudiants et l’ampleur de la préparation des cours : « T’as l’impression de ramer tout le temps à contre-courant. Tu dois circuler à travers toute la classe pour aller d’une équipe à l’autre te plonger chaque fois dans une activité différente […] C’est épuisant. » (cas 3)

Niveau 4A. Ce niveau correspond à une utilisation dite « routinière » de l’innovation. L’aspect routinier est attribué en raison de l’absence générale de changements dans l’utilisation de l’innovation. Les enseignants interrogés attribuent cependant tous l’absence de changement à une situation de surcharge.

Il y a plus de préparation et il faut être prêt beaucoup plus tôt. […] Ceux qui fonctionnent à la dernière minute vont être extrêmement inconfortables parce que tu ne peux pas dire : « Là je vais monter mon prochain cours ». Le prochain cours, non seulement il doit déjà
être monté, mais il doit déjà être disponible. […] C’était la course. […] On a eu des changements de calendrier pour x, y, z raisons. (cas 15)

Niveau 4B. Le niveau 4B correspond à une situation où l’enseignant effectue des changements dans sa façon d’utiliser l’innovation principalement dans le but de répondre aux besoins des étudiants. À l’exception du cas 13, les enseignants associés à ce niveau ne collaborent pas de façon formelle avec des collègues pour planifier ces changements.

Ce qui a changé dans ma pratique, c'est la recherche d'activités qui vont me permettre d'atteindre mon objectif, ce que je faisais un peu moins avant. Mais ça, c'est ce qui a vraiment le plus changé. Si je me rends compte que les étudiants ont une certaine difficulté, j'ai le réflexe de me poser la question : « quelle activité on pourrait faire pour régler ce problème-là ». Ce réflexe-là, avant, je ne l'avais pas. (cas 13)

Niveau 5. Ce niveau se distingue des autres niveaux du LoU par le fait que l’utilisateur cherche activement à combiner ses efforts avec ceux des autres utilisateurs dans le but d’obtenir un effet sur les étudiants. La collaboration est en effet forte pour les profils B, D et E auxquels les cas du niveau 5 correspondent.

Les entrevues réalisées avec les enseignants ont permis de constater qu’au-delà de l’intérêt, tous les enseignants du niveau 5 ont réalisé des activités de collaboration formelles avec des collègues. Ces activités ont pris la forme de rencontres hebdomadaires et même journalières. Ces rencontres étaient motivées par les avantages de la collaboration.

Discuter avec les collègues [de physique et littérature française] dans leur discipline, c’est une chose. Ce qui nous rejoignait, c’est justement la classe d'apprentissage actif avec tout ce que ça représente. Ce que moi j’ai pu constater dans mes groupes, ça fonctionne ou ça fonctionne moins bien. Chez vous ça fonctionne ? Qu’est-ce que tu as fait ? (cas 7)

Donc l’avantage c’est ça, on se complémente, on peut travailler plus, plus de rétroactions, ça nous motive et on réussit à accomplir plus de choses. […] En apprentissage actif, on génère quatre heures pour trois heures. On se rencontre trois heures et c’est tout ce que l’on a à faire pour nos cours. (cas 1)

Niveau 6. Le dernier niveau du modèle LoU est celui du renouveau. Les enseignants amorcent alors l’exploration de changements majeurs à l’innovation elle-même. L’unique enseignant associé à ce niveau l’est aussi au profil SoC F, le plus avancé. Le principal changement proposé par cet enseignant est une transformation de son approche d’évaluation, une intention qui n’a pas été mentionnée par les autres enseignants du projet puisqu’ils se concentraient sur les activités d’apprentissage. D’autres changements ont été proposés pour les équipements et le mobilier du local utilisé. En ce qui a trait à l’évaluation des apprentissages, voici ce que l’enseignant 6 envisageait :

Honnêtement cet automne, je donne un grand coup. J'espère que je vais avoir le temps et le courage. Je change mon évaluation des apprentissages. J'ai réalisé […] que le développement d'une compétence c'est une progression. Donc tout ce qu'on va faire en classe se cumule pour permettre de voir cette progression. Mais ça ne comptera pas que pour 1%; c'est une démarche. Je vais peut-être intégrer un portfolio, un journal de bord
ou autre chose. Tout ce qu'on va faire comme activité en classe va faire l'objet d'une documentation sur la progression des étudiants vers le développement de la compétence. (cas 6)

Inventaire des approches d’enseignement (ATI)

Le tableau 5 présente les valeurs obtenues pour chacune des deux échelles du modèle ATI, celles-ci variant de 1 à 7.

Tableau 5

Résultats aux deux échelles du modèle ATI en lien avec le profil SoC et les niveaux LoU

<table>
<thead>
<tr>
<th>Cas</th>
<th>Approche centrée sur l'enseignant</th>
<th>Approche centrée sur les étudiants</th>
<th>Profil SoC</th>
<th>LoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5,00</td>
<td>4,56</td>
<td>A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>4,25</td>
<td>4,89</td>
<td>A</td>
<td>4B</td>
</tr>
<tr>
<td>9</td>
<td>3,88</td>
<td>4,11</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3,25</td>
<td>4,78</td>
<td>B</td>
<td>4B</td>
</tr>
<tr>
<td>7</td>
<td>4,50</td>
<td>4,89</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6,00</td>
<td>6,44</td>
<td>B</td>
<td>4B</td>
</tr>
<tr>
<td>13</td>
<td>3,75</td>
<td>5,22</td>
<td>B</td>
<td>4B</td>
</tr>
<tr>
<td>3</td>
<td>4,75</td>
<td>5,67</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>4,00</td>
<td>4,89</td>
<td>C</td>
<td>4B</td>
</tr>
<tr>
<td>8</td>
<td>4,00</td>
<td>5,89</td>
<td>D</td>
<td>4A</td>
</tr>
<tr>
<td>14</td>
<td>3,57</td>
<td>6,11</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>5,38</td>
<td>6,00</td>
<td>D</td>
<td>4A</td>
</tr>
<tr>
<td>1</td>
<td>2,75</td>
<td>5,89</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>3,88</td>
<td>5,67</td>
<td>E</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>2,38</td>
<td>5,22</td>
<td>F</td>
<td>6</td>
</tr>
</tbody>
</table>

Compte tenu du petit nombre de cas à mettre en relation, une corrélation non-paramétrique de rang recourant au Tau de Kendall, qui est généralement préféré au Rho de Spearman, car il offrirait un meilleur estimé du paramètre pour la population (Howell, 2012), a été calculée entre les valeurs des échelles ATI, les profils SoC et les niveaux LoU, après une conversion des SoC et LoU en valeurs numériques ordinales (par exemple, profil A =1, profil B =2, etc.). Le tableau 6 présente les résultats de cette opération.
Tableau 6

Table de corrélation non paramétrique entre le LoU, le SoC et les échelles ATI

<table>
<thead>
<tr>
<th></th>
<th>LoU</th>
<th>centrée enseignant</th>
<th>centrée étudiants</th>
<th>SoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient de corrélation</td>
<td>1,000</td>
<td>-0,402</td>
<td>0,103</td>
<td>0,308</td>
</tr>
<tr>
<td>Sig (bilatéral)</td>
<td>.</td>
<td>0,074</td>
<td>0,652</td>
<td>0,191</td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>centrée enseignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient de corrélation</td>
<td>-0,402</td>
<td>1,000</td>
<td>0,089</td>
<td>-0,341</td>
</tr>
<tr>
<td>Sig (bilatéral)</td>
<td>0,074</td>
<td>.</td>
<td>0,653</td>
<td>0,094</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>centrée étudiants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient de corrélation</td>
<td>0,103</td>
<td>0,089</td>
<td>1,000</td>
<td>0,453*</td>
</tr>
<tr>
<td>Sig (bilatéral)</td>
<td>0,652</td>
<td>0,653</td>
<td>.</td>
<td>0,028</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SoC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient de corrélation</td>
<td>0,308</td>
<td>-0,341</td>
<td>0,453*</td>
<td>1,000</td>
</tr>
<tr>
<td>Sig (bilatéral)</td>
<td>0,191</td>
<td>0,094</td>
<td>0,028</td>
<td>.</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

* La corrélation est significative au niveau 0,05 (bilatéral).

La corrélation est significative (coefficient = 0,453; p < 0,05) entre les profils SoC et l’échelle centrée sur les étudiants. Aucune autre corrélation significative n’a été observée, mais une corrélation négative entre le LoU et l’échelle centrée enseignant approche le seuil de signification (p = 0,074).

Ceci indique que plus un utilisateur présente des intérêts et des préoccupations associées à celles d’un utilisateur avancé dans l’utilisation d’une CLAAC (et des méthodes d’enseignement associées), plus il déclare son approche d’enseignement centrée vers les étudiants (voir figure 8).
Figure 8. Résultat à l’échelle centrée sur les étudiants du modèle ATI en fonction de l’indice numérique du profil SoC de chaque enseignant (par exemple, profil A =1, profil B =2, etc.). Les étiquettes indiquent les numéros des cas.

Discussion

La plupart des enseignants participant à la recherche utilisaient pour la première fois une CLAAC. En lien avec les orientations théoriques du modèle CBAM qui prédit qu’un changement pédagogique important prend plusieurs années à se développer, ce qui frappe de prime abord, c’est l’état initial avancé des utilisateurs. En effet, quatre des six profils issus des intérêts et des préoccupations correspondent au profil d’utilisateurs avancés. Certains utilisateurs n’ayant aucune expérience de ce type de local et peu d’expérience avec la pédagogie active atteignent aussi des niveaux d’utilisation avancés (niveaux 4B et 5).

Préoccupations et intérêts

Sur le plan des préoccupations et des intérêts, les profils SoC montrent plusieurs cas où des enseignants n’ayant aucune expérience avec une CLAAC ont des profils d’intensité des stades d’intérêts et de préoccupations similaires à ceux d’utilisateurs avancés. Les cas du profil E illustrent particulièrement cette observation puisqu’ils ont un creux important au stade de la gestion, indiquant une préoccupation minimale pour les aspects de gestion et de coordination des activités dans la CLAAC. Une piste d’explication est apparue en entrevue lorsque les deux enseignants ont mentionné qu’ils ont très souvent recours à des méthodes qui relèvent de la pédagogie active depuis plusieurs années (3 à plus de 5 ans). Une grande expérience antécédente avec la pédagogie active (> 5 ans) est aussi présente chez le cas 17 (profil C) et 14 (profil D).
L’expérience pourrait être une piste d’explication aux profils SoC observés, mais deux enseignants (2 et 5) ayant déjà utilisé une CLAAC et disant avoir majoritairement recours à la pédagogie active dans leurs cours depuis plus de 3 ans ou plus présentaient un profil similaire à celui de non-utilisateurs. Ces deux cas appartiennent au profil A, qui regroupe des utilisateurs ayant des niveaux de préoccupations et d’intérêts plus faibles aux stades « conséquences » et « collaboration ». La pédagogie active étant parfois interprétée différemment par les professeurs dans la pratique (Boud & Feletti, 1998; Houlden, Collier, Frid, John & Pross, 2001), il aurait été utile de comparer les pratiques courantes des enseignants des profils A et E en lien avec la pédagogie active.

La collaboration et les niveaux d’utilisation

La corrélation entre le LoU et le SoC n’est pas significative. Bien qu’il existe des profils typiques d’utilisateurs plus ou moins avancés en fonction de leurs préoccupations et intérêts, le volet SoC du CBAM n’a pas été conçu pour formuler un jugement sur la façon d’utiliser l’innovation (George et al., 2013, p. 55). Par ailleurs, les deux mesures sont séparées par tout un semestre où il peut y avoir eu une évolution et où les défis étaient grands pour plusieurs enseignants, les profils ayant été recueillis en début de trimestre et le niveau d’utilisation en fin de trimestre. Certains liens entre ces deux mesures peuvent cependant être proposés.

La collaboration est un thème saillant dans les résultats, puisqu’elle correspond à un stade d’intérêt dominant dans la majorité des profils SoC (B, D, E, F) et qu’elle constitue un critère essentiel pour le classement au niveau 5 du LoU. Pour les enseignants du profil D en particulier (cas 8, 14 et 15), la collaboration est un incontournable au début du semestre. Cet intérêt s’est confirmé en entrevue, puisque les trois enseignants ont participé à plusieurs activités d’échange formelles pendant la session. Cependant, cette collaboration ne conduit pas nécessairement à un niveau d’utilisation correspondant puisque deux des trois cas du profil D sont associés au niveau de l’utilisation routinière (4A). Le manque de temps, mentionné plus haut pour les enseignants associés au niveau 4A, ou le besoin de s’approprier davantage les méthodes d’enseignement pourraient conduire les enseignants à remettre à plus tard l’essai des idées échangées.

Pour les enseignants des niveaux d’utilisation 5 et 6 chez qui la collaboration trouve aussi un intérêt fort, nous avons observé qu’ils s’étaient tous engagés dans des activités de collaboration formelles lors de l’expérience (par exemple, rencontre hebdomadaire). Une telle association entre un niveau d’utilisation élevé et le fait de prévoir des moments pour collaborer est en lien avec plusieurs modèles de développement professionnel en éducation et d’adoption de nouvelles approches d’enseignement (Clement & Vandenberghe, 2000; Hall & Hord, 2014; Poellhuber & Boulanger, 2001; St-Germain, 2008).

Plusieurs enseignants associés aux profils A et B (non-utilisateurs et débutants) le sont également au niveau d’utilisation 4B (cas 4, 5, 10, 13). Comme ce niveau correspond au 6ème niveau sur 8 dans l’échelle du LoU, il nous apparaît intéressant que plusieurs enseignants « débutants » obtiennent un niveau d’utilisation de l’innovation qui soit plutôt élevé. Malgré les défis liés à l’utilisation d’une CLAAC pour les novices, ces enseignants réussissent à réaliser des changements en fonction de leurs observations chez les étudiants. La collaboration avec les autres et le soutien technopédagogique disponible localement et à l’échelle du projet expliquent partiellement cet état de fait, particulièrement pour les enseignants du profil B. Le cas 3 montrait
un profil d’utilisateur ayant des préoccupations plus avancées (gestion et conséquences chez les étudiants), mais qui s’est limité à des changements orientés vers sa propre pratique (niveau 3). Il est possible que les difficultés liées à la gestion de la CLAAC aient persisté pendant l’expérience pour cet enseignant.

En somme, les liens entre les profils SoC et LoU suggèrent un rôle notable de la collaboration dans l’appropriation d’une CLAAC, rôle qui joue cependant différemment en fonction des profils et des niveaux d’utilisation. Un profil d’intérêts avancé et la réalisation d’activités de collaboration formelles constituent une combinaison gagnante chez les participants à cette étude.

Approches de l’enseignement

L’approche d’enseignement centrée sur les étudiants est attribuée à une vision de l’apprentissage où les activités proposées aux étudiants servent à restructurer leurs connaissances d’un sujet (Trigwell et al., 2005; Trigwell & Prosser, 2004). Selon ce modèle, un enseignant qui s’inscrit dans cette approche cherchera à réserver du temps pour discuter des sujets étudiés et pour que les étudiants discutent entre eux également. Il provoquera aussi délibérément des débats et des discussions pour que les étudiants remettent en question leurs compréhensions de la matière. Il planifiera enfin des occasions d’aider les étudiants à trouver leurs propres ressources d’apprentissage. Ces éléments sont tout à fait cohérents avec les méthodes d’enseignement mises de l’avant dans l’utilisation d’une CLAAC et de la pédagogie active.

La corrélation entre l’approche d’enseignement et les profils SoC permet d’expliquer en partie pourquoi des enseignants qui débutent avec une CLAAC ont des profils d’intérêts similaires à ceux d’utilisateurs avancés. Dans la mesure où l’utilisation de la CLAAC suppose le recours à la pédagogie active, un enseignant qui favorise déjà un enseignement centré sur les étudiants aura un pas d’avance dans l’utilisation de la CLAAC par rapport à un enseignant qui accorde plus d’importance à sa responsabilité dans la transmission de contenus. On peut donc envisager que cette avance se reflétera dans le profil SoC de l’enseignant. La situation inverse, c’est-à-dire celle d’utilisateurs ayant déjà une expérience d’utilisation de la CLAAC, mais affichant un profil de non-utilisateur, pourrait aussi s’expliquer par la faible valeur obtenue à l’échelle centrée sur les étudiants.

Conclusion

L’expérience décrite dans cet article a permis de mieux connaître certains aspects de l’adoption d’une CLAAC chez des enseignants au postsecondaire.

L’analyse des stades d’intérêts et de préoccupations des enseignants au début de l’expérience a permis de regrouper des cas ayant des profils semblables et de mettre en évidence six profils différents. Nous avons constaté que cinq des six profils correspondent à ceux...
d’utilisateurs avancés dans l’adoption de l’innovation. De plus, après un seul trimestre d’utilisation, 13 cas sur les 15 ont atteint des niveaux d’utilisation supérieurs au niveau 3. Ainsi, nous avons observé, à travers les outils du modèle CBAM, des utilisateurs novices de la CLAAC avec des profils d’intérêts et de préoccupations ainsi que des niveaux d’utilisation qui s’apparentent à ceux d’utilisateurs expérimentés, un résultat qui contraste avec le temps généralement requis pour l’adoption d’une innovation de cette ampleur.

L’importance de la collaboration émerge aussi clairement des résultats sur les stades d’intérêts et de préoccupations, sur les niveaux d’utilisation ainsi que des entrevues. La collaboration est associée à plusieurs avantages dans le contexte difficile de l’adoption de la CLAAC, mais dans la majorité des cas, elle ne se traduit pas par niveau d’utilisation où la collaboration est centrale. Les enseignants expliquent cette situation en partie par les problématiques de manque de temps pour s’approprier les nombreuses dimensions de l’utilisation d’une CLAAC. Une piste de solution à ce problème a toutefois été identifiée chez les enseignants associés aux niveaux d’utilisation plus élevés qui prévoient des moments formels (par exemple, les rencontres hebdomadaires) pour collaborer. Ces derniers estiment que la collaboration diminue pour eux le « coût » des nouvelles activités.

L’approche d’enseignement centrée sur les étudiants est corrélée positivement avec les profils d’intérêts et de préoccupations, ce qui contribue à expliquer pourquoi des utilisateurs novices montrent des profils d’utilisateurs avancés, certains ayant déjà une approche adaptée à la pédagogie active. À l’inverse, les enseignants associés au profil des non-utilisateurs malgré le fait qu’ils ont déjà utilisé une CLAAC avant le projet ont des résultats plus faibles à l’échelle centrée sur les étudiants.

Il faut cependant souligner que la corrélation a été observée sur un échantillon de petite taille (n=15) et qui a été constitué avec des participants qui s’étaient portés volontaires pour ce projet. De plus, les données sur lesquelles s’appuie le présent article sont toutes autorapportées par les enseignants, au travers d’entrevues ou de questionnaires. Un effet de désirabilité sociale a pu influencer leurs réponses et il n’est pas certain que les données qu’ils rapportent aux chercheurs sur les approches pédagogiques déployées ou l’adoption de l’innovation représentent parfaitement la réalité.

Les 15 enseignants grâce à qui ces résultats ont été obtenus sont issus de cinq établissements d’enseignement du réseau collégial québécois. À cela s’ajoute le fait que les enseignants offraient des cours dans six disciplines différentes, ce qui est une première, à notre connaissance, dans les études sur les CLAAC où l’enseignement de la physique était l’unique discipline présente. Aussi, sur le plan méthodologique, nous avons déployé les différents outils du CBAM, dans une approche mixte recourant à la fois à un questionnaire et une entrevue. Cette approche à la fois quantitative et qualitative a permis d’approfondir notre compréhension de certains facteurs liés à l’adoption de la CLAAC, notamment l’importance de la collaboration.

Cette étude a permis de démontrer une nouvelle fois l’importance de l’approche d’enseignement dans l’utilisation d’une CLAAC. Il serait pertinent de poursuivre cette piste de recherche en s’intéressant à d’autres liens de l’approche avec d’autres aspects de l’utilisation de la CLAAC chez les enseignants et les étudiants avec un échantillon plus étendu. De plus, les données recueillies étant essentiellement autorapportées, il serait essentiel de pouvoir les relier à
Liens entre le modèle CBAM et l’approche d’enseignement

des observations détaillées d’activités en classe. Sur le plan de la pratique, il y aurait un intérêt chez les praticiens qui songent à utiliser régulièrement une CLAAC à s’intéresser aux modèles CBAM et ATI pour mieux comprendre où ils se situent dans le processus d’adoption de cette innovation.

Enfin, la collaboration formelle entre les enseignants et le niveau d’utilisation identifié chez ces derniers à la fin du semestre porte à croire qu’il y aurait là aussi une piste à explorer au profit du soutien des enseignants qui s’approprient le contexte aménagement/TIC/pédagogie active complexe qu’est la CLAAC.

Références bibliographiques

Auteurs

Samuel Fournier St-Laurent est conseiller pédagogique au Collège Ahuntsic et doctorant à l’Université de Montréal sous la direction de Bruno Poellhuber. Il a également enseigné la chimie dans plusieurs collèges. Il est l’un des deux chercheurs principaux du projet de recherche qui a donné lieu à cette publication. Courriel : samuelfstlaurent@gmail.com

Bruno Poellhuber est professeur à la Faculté des sciences de l’éducation et directeur des Services de soutien à l’enseignement de l’Université de Montréal. Son champ de spécialisation est l’utilisation des technologies à des fins de collaboration, d’enseignement ou d’apprentissage au postsecondaire, dans des contextes d’enseignement en présentiel et de formation à distance. Courriel : bruno.poellhuber@umontreal.ca

Madona Moukhachen est conseillère pédagogique aux technologies de l’information et de la communication au Collège Ahuntsic, et doctorante à l’Université de Montréal sous la direction de Bruno Poellhuber. Elle accompagne les enseignants qui se préparent à enseigner dans le contexte d’une classe d’apprentissage actif. Courriel : madona.moukhachen@umontreal.ca

Cette création est mise à disposition sous un contrat Creative Commons 3.0.
A Quantitative and Qualitative Inquiry into Future Teachers’ Use of Information and Communications Technology to Develop Students’ Information Literacy Skills

Enquête quantitative et qualitative auprès de futurs enseignants portant sur l’utilisation des technologies de l’information et de la communication pour développer les compétences informationnelles des élèves

Stéphanie Simard, University of Quebec in Trois-Rivières
Thierry Karsenti, University of Montreal

Abstract

This study aims to understand how preservice programs prepare future teachers to use ICT to develop students’ information literacy skills. A survey was conducted from January 2014 through May 2014 with 413 future teachers in four French Canadian universities. In the spring of 2015, qualitative data were also collected from 48 students in their final year of an initial teacher training program. Our findings suggest that although future teachers receive formal ICT training as part of their program, information literacy is not formally addressed. Nevertheless, information literacy is perceived to be an important skill. In addition to a lack of formal training, future teachers perceive that barriers such as time constraints and lack of access to necessary technologies in the classroom will prevent them from helping students develop information literacy skills. Based on these results, we propose some practical implications and recommendations for preservice programs and education policy makers.

Résumé

Cette étude vise à mieux comprendre comment la formation initiale en enseignement prépare les futurs enseignants à utiliser les TIC pour développer les compétences informationnelles des élèves. Dans un premier temps, une enquête a été réalisée entre janvier et mai 2014 auprès de 413 futurs enseignants dans quatre universités québécoises. Dans un second temps, au printemps 2015, des données qualitatives ont été recueillies auprès de 48 futurs enseignants au cours du dernier trimestre de leur formation initiale. Nos analyses suggèrent que si les futurs enseignants reçoivent une formation à l’utilisation pédagogique des TIC, les compétences informationnelles ne sont pas explicitement abordées, et ce, bien qu’elles soient perçues comme essentielles. De plus, les contraintes de temps et l’accessibilité aux outils informatiques sont
A quantitative and qualitative inquiry into future teachers’ use of information and communications technology

Introduction

Information and communication technology (ICT) and the Internet have spurred profound changes, with enormous repercussions on socioeconomic systems, including education systems (Conference Board of Canada, n.d.; Livingstone, 2012). ICT is increasingly present in Canadian classrooms (e.g., interactive smart boards, laptops, and tablets), and even more so in students’ daily lives (e.g., social media and mobile technologies). The exponentially expanded access to knowledge and information provided by this massive influx of ICT tools calls for teaching practices to be redesigned. Teachers are in a position to help children develop new sets of technical and cognitive skills that will equip them to assess the usefulness of digital tools to access meaningful information (and exclude irrelevant information), manage it, use it effectively for learning, and share it ethically in collaborative online spaces.

The International Computer and Information Literacy Study (ICILS, International Association for the Evaluation of Educational Achievement (IAE), 2013) investigated how school-aged children (in their eighth year of school) develop these skills. Results suggest that information literacy should be taught in school, and that it would be naive to believe that children develop these skills on their own, as a natural by-product of ICT access.

However, in her study of 5,436 Canadian students from grades 4 to 11, Steeves (2014) suggests that schools do not play a clear, well-defined role in the development of these skills. Of those surveyed, 92% of Canadian youth stated that they knew how to find information online, but only 45% of them said that their teachers helped them develop these skills. Although some students are currently receiving pedagogical support to develop information literacy skills, this finding suggests that many do not.

In sum, if it is universally recognized that information literacy is essential for 21st century students, then future teachers should be trained to use ICT in order to help students develop these skills. The observed differences in pedagogical support for information literacy skills in Canadian schools (Steeves, 2014) could result in inequalities between children who grow up to mobilize those skills and those who do not (IAE, 2013).

Karsenti and Dumouchel (2011) shed some light on the disparities in the pedagogical use of ICT to develop students’ information literacy skills in Canadian schools. They conclude that these skills are generically embedded within subject courses, which complicates didactic transfer in terms of both managing and evaluating pedagogical activities across the curriculum. On the subject of the generic nature of information literacy, Astolfi (2008) and Frisch (2003) underscore that there is no traditional model for teaching and learning information literacy, unlike core subjects such as languages, math, chemistry, or physics, and that a lack of theoretical clarity further complicates the didactic transfer process.

Many models focus on the use of ICT for core subjects in teacher training programs. For example, Mishra and Koehler (2006) proposed the Technological Pedagogical Content
Knowledge framework (TPACK) to provide the theoretical grounds for ICT integration in domain-specific (e.g., maths, language) teacher training programs. However, ICT use for the purpose of developing students’ information literacy skills has been neglected.

Nonetheless, authors such as Beheshti, Cole, Kuhlthau, and Bilal (2013), have proposed the use of ICT to enable inquiry-based learning (IBL). IBL is a teaching approach based on the information search process (ISP) model for library and information skills (Kuhlthau, Turock, George, & Belvin, 1990). According to IBL, teachers use targeted interventions (pedagogical support) as their students independently search a variety of information sources to find information with which to build domain-specific knowledge. As such, IBL can be considered a constructivist teaching approach. Other such approaches include problem-based learning and project-based learning (PBL), both based on Vygotsky’s (1978) conception of the “zone of proximal development” (ZPD), and Wood et al.’s (1976) idea of “scaffolding.” These teaching approaches are now recognized by Canadian teacher training programs (see Gouvernement du Quebec, 1996). However, even though these teaching approaches are well recognized by policymakers, Hattie (2015) found that IBL shows an effect size of only \(d=0.31 \). Although it remains unclear how well information literacy is addressed in educational standards and teacher training programs (Willer & Eisenberg, 2014), lack of information literacy skills could be part of the explanation for the limited effects of IBL on learning on core subjects learning (Hattie, 2015).

Probert (2009) and Stockham and Collins (2012) suggest that teachers do not fully grasp the theoretical framework or teaching models for information literacy. Tanni (2013) argues that even teachers who are digital natives—they have grown up with the Internet—lack the knowledge and expertise to incorporate information literacy into their teaching practice. Furthermore, empirical evidence from a study by Dumouchel and Karsenti (2013) demonstrates that Quebec’s future teachers are inadequately trained in information literacy. These findings are echoed by many authors around the world, such as Togia, Korobili, Malliari, and Nitsos (2015), who propose that the main barriers to effective information literacy integration are insufficient teacher training, time, and infrastructure.

Other determinants of effective information literacy integration in the classroom have been considered in the literature (Siddiq, Scherer, & Tondeur, 2016), including affective and cognitive factors such as perceived value and self-efficacy (Andreassen, & Bråten, 2013). For example, French Canadian studies of future teachers’ self-efficacy in information literacy (Dumouchel & Karsenti, 2013; Fournier, 2007) obtained high self-efficacy scores despite lack of training, but low formal assessment scores. The discrepancy between teachers’ self-efficacy in information literacy and their actual performance also challenges the value of self-developed information literacy skills.

The motivation for the present exploratory study arises from these concerns. The aim is to gain a deeper understanding of the factors that influence future teachers to use ICT to develop students’ information literacy skills for their future careers, and to offer practical recommendations for teacher training programs and policymakers concerning information literacy in education.
Theoretical Framework

To avoid a conceptual blur in the understanding of information literacy, media literacy, ICT literacy, and the like, we will first clarify the concept of information, and second the construct of information literacy as used in this study. Third, we will discuss the social cognitive framework we used to develop the data collection questionnaire.

Information

The concept of information is abstract by nature, and it lends itself to interpretation. For example, Zins (2007) counted over 120 different definitions. For simplification purposes, our definition is based more on a pragmatic than an exhaustive approach.

On the one hand, inspired by the post-positivist paradigm, we adapted the definition proposed by Popper (1972), which refers to the “contenus de journaux, livres, œuvres d’art et bibliothèques” (the content of newspapers, books, works of art, and libraries; our translation) (p. 120). Because this definition dates from the 1970s, we may add all the content of the new media and storage formats that are currently available via ICT: digital data, logs, blogs, electronic books, and multimedia file formats, as well as those to come. In the digital information age, our definition of information must therefore cover all digital content and digital objects that can be transmitted (accessed and distributed), organized (stored and archived), retrieved (from the Internet, libraries, and archives), evaluated (for relevance and reliability), and processed (by computers and individuals). Thus, access, organization, location, evaluation, processing, and transmission are the common and essential attributes for recognizing multiple potential forms of information.

Information Literacy

Like information, the construct of information literacy is fluid in meaning. In other words, it varies according to the context, discipline, culture, and usage. UNESCO (2011) proposes that information literacy is closely connected to the principles of democracy, human development, and lifelong learning. UNESCO’s definition is based on the broad notion of “learning to learn,” and it is referred to as “media and information literacy.”

According to the International Association for the Evaluation of Educational Achievement (IAE, 2013), the main difference between media literacy and information literacy is that for media literacy, the emphasis is on measuring the understanding of information as an outcome, whereas the emphasis for information literacy is mainly on the information management process. Hence, the IAE describes computer and information literacy as: “an individual’s ability to use computers to investigate, create, and communicate in order to participate effectively at home, at school, in the workplace, and in society.” (p. 17). This definition implies the following multidimensional assessment framework: 1) knowing about and understanding computer use, 2) accessing and evaluating information, 3) managing information, 4) transforming information, 5) creating information, 6) sharing information, and 7) using information safely and securely.

The IAE measures these seven dimensions independently of the domain-specific knowledge (reading, mathematics, sciences), as opposed to the PISA integrated approach to ICT.
assessment (OECD, 2015), which focuses on digital reading or the use of ICT tools for solving mathematics problems. Furthermore, the OECD (2015) results also suggest that ICT has little impact on students’ achievement in these areas, and that better returns on investments in education systems could be linked to information literacy.

Generally speaking, information literacy may be represented as the overall information research process (Helvoort, 2010), as schematized below in Figure 1.

![Image of the overall information research process]

Figure 1. The overall information research process.

Figure 1 illustrates the components of the information research process. They include defining and formulating information needs; finding and accessing information; evaluating retrieved information; organizing, processing, and using the information; and communicating it. This process has been adopted repeatedly in the literature and is now the subject of many practical guides for teachers (see http://karsenti.ca/informationsearch.pdf developed by Karsenti, 2014).

On the conceptualization of information literacy, Boubée and Tricot (2010) suggest adding further dimensions to the above-mentioned information research process to better represent the information literacy construct, as illustrated in Figure 2.
A quantitative and qualitative inquiry into future teachers’ use of information and communications technology

The first dimension in Figure 2 refers to the ICT competencies required to access online content, process it, apply it, and share it. These are the technical skills that are required for the information research process. In terms of information literacy, these skills include using a computer and its functions as well as working with research interfaces and other associated tools such as bibliographic data, document management software, and Web applications (Boubée & Tricot, 2010).

The second dimension refers to the disciplinary and cultural knowledge that underlies the original need for information such as a knowledge gap needing to be filled (Dervin, 1983) the formulation of a search strategy, and the delimitation of the information landscape (Marchionini, 1988). Disciplinary and cultural knowledge are also essential for evaluating and judging the information retrieved through search engines. The proliferative expansion of knowledge obliges us to continuously sort, interpret, and evaluate information that may be true or false. However, issues arise concerning the criteria and tools we use to make these judgments. In our view, judgments are based on disciplinary knowledge and culture, which provide an interpretative grid for our judgments as well as tools for evaluating and processing information in order to construct meaning (Montiel-Overall, 2007). Accordingly, Van Deursen and Van Diepen (2013) demonstrated that disciplinary knowledge is statistically associated with the ability to discriminate and evaluate information.

The third dimension refers to the ability to manage the overall information research process, which in reality is more iterative than the linear process illustrated in Figure 1. On this issue, some authors (Brand-Gruwel, Wopereis, & Vermetten, 2005; Uribe-Tirado & Castaño-Muñoz, 2012) suggest the notion of meta-competency in their models of information literacy,
referring to the skills required to regulate the information research process in an iterative manner as the meaning is constructed from the retrieved information.

In sum, whereas information literacy has been broadly defined in the literature and debates persist as to its components and scope, in the present study we have adopted a conceptual framework that includes the basic ICT competencies and the management of the information research process, similar to the IAE (2013) model.

Method

We used a sequential mixed method research design (Creswell & Plano Clark, 2007) that combines a large-scale quantitative survey, followed by a smaller qualitative data collection and analysis. An explanatory design was used: qualitative data were collected to supplement the quantitative data and enable a deeper analysis. Rather than for triangulation purposes, the qualitative results were used to respond to the research objectives that were derived from the quantitative results, as presented below.

Participants and Material

The convenience sample of the quantitative portion of the present study comprised 413 French Canadian future teachers enrolled at four universities located in the province of Quebec, Canada (University 1 n=214; University 2 n=126; University 3 n=61; University 4 n=12). The average age of the participants was 22.72 years (SD = 3.15; range 18–40 yrs). Of the sample, 79.7% were women, at a proportion similar to that for the education labor market in Quebec (81% women, 19% men [Centrale des syndicats du Québec, n.d.]). The main study programs were elementary and preschool teaching (36.1%; n=149), high school teaching (21.1%; n=87), special education (32%; n=132), physical education (9.4%; n=39), and one student enrolled in ethics and religious studies (0.2%).

In Quebec, the teacher training program includes 8 trimesters. On average, the participants had completed 4.19 trimesters, with a mean of 2 trimesters (n=81) and the 50th percentile at 4 trimesters. Of the participants, 86% had received some formal ICT training as part of their initial teacher training program (1 dedicated course on ICT integration in traditional subject teaching).

A self-administered questionnaire was developed in two phases. In the first phase, the concept of information literacy was operationalized according to the above-mentioned definition. In the second phase, we drew on social cognitive theories to construct a questionnaire designed to extract information about key influential factors for future teachers’ use of ICT to develop students’ information literacy skills.

To operationalize the information literacy concept, we identified several scales that have been used to measure information literacy and that specifically target university students (Beile O’Neil, 2005; Directorate of Libraries of the University of Montreal, 2006; Kent State University, 2011; Mittermeyer & Quirion, 2003 UNESCO, 2013). After analyzing these scales, we retained the following nine key components as indicators of information literate teachers:
1. Be able to identify a variety of information sources to find answers to problems in creating teaching scenarios, texts, presentations, etc.
2. Use Web search engines (e.g., Google, Bing) to find useful information about teaching practices (e.g., course content, assessment tools, study guides)
3. Use library research tools and specialized education documentation centers (e.g., BANQ, UNESCO, GRICS) to find useful information about teaching practices
4. Evaluate the usefulness of ICT for teaching
5. Determine the criteria for evaluating information found on the Internet and evaluate it effectively
6. Set up a filing system to organize documents and digital links
7. Synthesize and structure information retrieved from the Internet to write reports, prepare teaching scenarios, create presentations, solve problems, etc.
8. Share Web information on teaching practices
9. Respect copyrights and privacy on the Internet

In the second phase, we used these nine indicators to develop questions about teachers’ attitudes, perceived social norms, and perceived behavioral controls related to the use of ICT to develop students’ information literacy skills. To do so, we followed the recommendations by Fishbein and Ajzen (2010). Participants were asked to rate their personal opinions on a seven-point scale. The principal investigator conducted the survey from January through May 2014. IBM SPSS Statistics v. 23 was used for data entry and analysis.

For the qualitative phase of the study, a convenience sample of 48 future teachers in the final trimester of their training program at a single French Canadian university was used. The sample included 24 men and 24 women with an average age 26 years. The participants responded to structured written questions about their use of ICT to develop students’ information literacy skills. The responses were then subjected to thematic coding analysis (Miles & Huberman, 2003) to classify the responses into a limited number of categories, or meaning units, related to our research objectives.

Quantitative Results

This section first presents the results of the statistical analysis of the quantitative data. Given the ongoing debates on the appropriateness of using seven-point scale data for parametric analyses (Carifio, & Perla, 2008) and robustness, only the nonparametric test results are presented here. Three qualitative research objectives were then derived from the quantitative results, and are presented below in a separate section.

Self-reported Information Literacy Competencies

The first block of questions assessed perceived competency according to the nine information literacy indicators. The responses were rated on a scale from 1 to 7 (1 = lowest perceived competency; 7 = highest perceived competency).

Overall, self-reported competency was quite high, with left-skewed distributions (Figure 3).
The results presented in Figure 3 suggest that future teachers felt most competent to “Use Web search engines” ($M = 6.28$, $SD = 0.932$, $n=410$, skewness of -1.77, kurtosis of 4.48) and least competent to “Use library research tools” ($M = 3.97$, $SD = 1.59$, $n=410$, skewness of -0.3, kurtosis of -0.74). Results for the other indicators were “Be able to identify a variety of information sources” ($M = 5.42$, $SD = 1.137$), “Evaluate the usefulness of ICT for teaching” ($M = 5.15$, $SD = 1.186$), “Determine the criteria for evaluating information found on the Internet and evaluate it effectively” ($M = 5.25$, $SD = 1.173$), “Set up a filing system” ($M = 5.21$, $SD = 1.577$), “Synthesize and structure information retrieved from the Internet” ($M = 5.64$, $SD = 1.243$), “Share Web information on teaching practices” ($M = 4.97$, $SD = 1.579$), and “Respect copyrights and privacy on the Internet” ($M = 5.29$, $SD = 1.505$).

Mann–Whitney’s U test was conducted to test the hypothesis that student teachers who received formal ICT training as part of their program would obtain higher average scores on the indicators compared to those who did not. The results were significant only for indicator 4, “Evaluate the usefulness of ICT for teaching” ($U = 13 428.5$, $z = 4.42$, $p = .000$, $r = .23$). For this indicator, student teachers who received formal ICT training as part of their program had an average rank of 215.43 ($Mdn = 5.32$, $n=354$) versus 142.71 for those who did not ($Mdn = 4.45$, $n=56$). No other statistical differences in the indicators were found between participants who received (or did not receive) formal ICT training as part of their training program.
The hypothesized gender differences in self-reported information literacy competency were also assessed. The results indicate higher perceived competency for men ($Mdn = 5.53$, $n=79$) according to the indicator “Share Web information on teaching practices” compared to women ($Mdn = 5.06$, $n=326$, $U = 10\,860.5$, $z = -2.2$, $p = .03$, $r = -.11$). In contrast, perceived competency was significantly higher for women ($Mdn = 5.68$, $n=327$) for the indicator “Respect copyrights and privacy on the Internet” compared to men ($Mdn = 4.93$, $n=78$, $U = 9\,613$, $z = -3.48$, $p = .001$, $r = -.17$). No other statistical differences between males and females were observed.

Self-reported Attitudes Towards the Use of ICT to Develop Students’ Information Literacy Skills

To obtain information about attitudes toward the use of ICT to develop students’ information literacy skills, “outcome evaluation” questions inspired by Davis’ (1989) Technology Acceptance Model (TAM) were developed for each of the nine information literacy indicators. Davis (1989) suggests that usefulness and perceived ease predict attitudes toward a given technology. For each of the indicators, three responses were formulated as follows: “is an effective way of teaching,” “makes my job easier,” and “is something I enjoy doing.” Responses were rated on a seven-point scale ($1 = $is not at all effective, $7 = $is very effective; $1 = $makes my job harder, $7 = $makes my job easier; $1 = $is something I do not enjoy, $7 = $is something I enjoy). The highly skewed results suggest that the participants generally had a positive attitude toward the use of ICT to develop students’ information literacy (Figure 4).
Spearman’s test was conducted to assess the hypothesis that the attitudes were related to the duration of the initial training program. This hypothesis is based on the proposition that as future teachers become more effective in subject-area didactics, attitudes toward the integration of generic skills, such as information literacy, would decrease.

For the first response formula, “is an effective way of teaching,” the number of trimesters spent in teacher training was significantly correlated to four of the nine information literacy indicators: “Using library research tools with students” ($r_s = -.142\%$ BCa CI[-.24, -.043,], $p = .005$), “Evaluating information found on the Internet and evaluating it with students” ($r_s = -.149\%$ BCa CI[-.243, -.05], $p = .003$), “Helping students set up a filing system” ($r_s = -.184\%$ BCa CI[-.282, -.078], $p = .000$), and “Helping students respect copyrights and privacy on the Internet” ($r_s = -.198\%$ BCa CI[-.296, -.098], $p = .000$). No statistically significant correlations were observed between teacher training duration and the five other indicators for this formula.

For the second response formula, “makes my job easier,” training duration was significantly correlated to two of the nine indicators: “Helping students set up a filing system”
(r_s = -.150% BCa CI[-.257, -.051], p = .003) and “Helping students respect copyrights and privacy on the Internet” (r_s = -.122% BCa CI[-.228, -.026], p = .017). No statistically significant correlations were observed for the seven other indicators.

For the third response formula, “is something I enjoy,” training duration was significantly correlated to two of the nine indicators: “Helping students set up a filing system” (r_s = -.156% BCa CI[-.249, -.058], p = .002) and “Helping students respect copyrights and privacy on the Internet” (r_s = -.120% BCa CI[-.221, -.021], p = .019). No statistically significant correlations were found for the seven other indicators.

In line with our hypothesis, time spent (duration) in the initial training program does not appear to improve attitudes toward information literacy. On the contrary, the indicators show declining attitudes with increased training duration.

Perceived Social Norms for the Use of ICT to Develop Students’ Information Literacy Skills

We used Fishbein and Azjen’s (2010) definition of perceived social norms in a two-step approach to assess social norms. First, we identified a set of referents for the future teachers with respect to the use of ICT to develop students’ information literacy skills. Second, we captured future teachers’ beliefs about the opinions these identified referents might have about engaging students in information literacy skills.

For each of the nine information literacy indicators, we asked the participants whether the opinions of their current university professors, future employers, current peers, and future students mattered on a seven-point bipolar scale. The results are shown in Figure 5.
A quantitative and qualitative inquiry into future teachers’ use of information and communications technology

Figure 5. Whose opinion matters on the use of ICT to develop students’ information literacy skills.

The results shown in Figure 5 suggest that the opinions of current peers matter less than the opinions of current professors, future employers, and future students. Therefore, current peers were not included in the second step of the analysis.

In general, future teachers believed that the referents would have positive opinions about engaging in students’ development of information literacy (Figure 6).
Figure 6. Beliefs of future teachers concerning referents’ opinions about the use of ICT to develop students’ information literacy skills.

However, our data indicate that beliefs about future students were less enthusiastic for certain indicators, such as the use of library tools ($M = 4.58$) and copyrights/privacy ($M = 4.67$), whereas beliefs about the opinions of current professors ($M = 6.08; 6.32$) and future employers ($M = 6.12; 6.32$) were quite positive for the same indicators. In addition, for the perceived opinions of current professors and future employers, sharing information online received the lowest score ($M = 4.86; M = 4.64$), whereas the opinions of future students were more positively perceived ($M = 5.57$).

Perceived Control Over the Use of ICT to Develop Students’ Information Literacy skills

We assessed future teachers’ perceived control over information literacy teaching by asking participants to evaluate three dimensions of control for each of the nine information literacy indicators, as follows: 1) feelings that their teacher training program prepared them to use ICT to develop students’ information literacy skills; 2) belief that the necessary time will be available in class to use ICT to develop students’ information literacy skills; and 3) belief that the required equipment will be available in class to use ICT to develop students’ information literacy skills. The results are shown in Figure 7.
Figure 7. Perceived control over the use of ICT to develop students’ information literacy skills.
The scores on preparation for using ICT to develop students’ information literacy skills are generally situated at the lower end of the seven-point scale. This is especially true for “using ICT to help students share information online (M = 3.49), “using ICT to help students set up a filing system” (M = 3.5), and “using library research tools with students” (M = 3.68).

The scores on available time are in the lower range of the seven-point scale, and are particularly low for equipment availability: “using multiple sources of information” (M = 3.16) and “using Internet search engines” (M = 3.37).

Qualitative Results

In light of the quantitative results, we developed qualitative questions to further explore the following issues:

1. How could initial training programs better prepare future teachers to use ICT to develop students’ information literacy skills?
2. Why would using ICT to develop students’ information literacy skills be useful (or not) for future teachers?
3. What are the most effective ways or strategies for teachers to develop students’ information literacy skills?

The participants’ responses were subjected to thematic coding analysis (Miles & Huberman, 2003) to classify them into a limited number of categories, or meaning units.

Responses to the first question, “How could initial training programs better prepare future teachers to use ICT to develop students’ information literacy skills?” were analyzed to identify emergent categories. Six categories were identified.

The first category concerns courses on information literacy instruction. Of the participants, 41.7% suggested that more courses in this area would better prepare them to teach information literacy. The following are examples of statements that fell into this category:

- “Better introduce this aspect into all the pedagogical and instructional courses. It should go beyond just using PowerPoint.”
- “Aside from the course called Pedagogical Use of Technology, I can’t say that my training helped me on this point. At university, the professors don’t ask for anything more than a few slideshows.”

The second category concerns the number of courses on ICT offered in their training program: 22.5% of participants suggested increasing the number. In the third category, 20.8% wanted to take specialized ICT courses for their teaching subject. In the fourth and fifth categories, 12.5% suggested more collaboration with schools, and 6.3% suggested using specific software and teaching devices. Finally, a small number (2.1%) wanted to have access to educational resources for teaching and learning information literacy.

For the responses to the second question, “Why would using ICT to develop students’ information literacy skills be useful (or not) for future teachers,” we applied content analysis.
according to pre-established categories to determine whether it was more useful for students (77.1%) or teachers (22.9%) to develop these skills.

The following examples of respondents’ statements illustrate the usefulness for teachers:

- “I help them with their homework in high school, and every night we browse the Internet.”
- “By developing information literacy in my students, I can integrate education reform better.”
- “Better integration of competency 8” (ICT integration).

The connection that some participants (22.9%) made between information literacy and their teaching strategies is noteworthy, and so is the connection with encouraging autonomy during homework help and implementing the Quebec Education Program (http://www1.mels.gouv.qc.ca/sections/programmeFormation/primaire/index_en.asp), which has adopted a constructivist theory of learning supported by information literacy.

For the third question, “What are the most effective ways or strategies for teachers to develop students’ information literacy skills?” the responses were classified by content analysis, obtaining the 10 following categories:

1. Problem- and project-based learning (60%)
2. Demonstration/modeling (31.3%)
3. Ongoing teacher training (10.4%)
4. Creating educational resources (10.4%)
5. Assessing information literacy (8.3%)
6. Improving access to ICT in the classroom (8.3%)
7. Varying teaching activities (6.3%)
8. Collaborating with information professionals (6.3%)
9. Peer learning (4.2%)
10. Teaching the overall information search process (4.2%).

The responses below illustrate the first two categories:

- “Guided Internet searches with the students and peer workshops to demonstrate effective search methods.”
- “Assigning a computer-based project where the students have to do research. Explaining and demonstrating at project start how to do an effective search.”

Discussion

Although this study consists of an exploratory overview of key factors that could influence future teachers to use ICT to develop their students’ information literacy skills, we hope that our results will contribute to inform the development of initial teacher programs as well as policymakers’ decisions.
Although our data on self-reported information literacy competency are in line with previous research (Dumouchel & Karsenti, 2013; Fournier, 2007), we found lower perceived competency in using library tools and sharing information on the Web compared with the other indicators. In fact, using library research tools was scored lower in terms of both future teachers’ attitudes and future students’ social norms. Because our results also indicate that the perceived opinions of future employers and current professors are more positive for these two indicators, it would be worthwhile to consider revising teacher training programs to increase the focus on library research tools and sharing information on the Web.

Moreover, initial training program duration does not appear to improve attitudes toward information literacy. On the contrary, this attitudinal decline suggests the following hypothesis: teachers begin their training with a generally positive attitude toward the information literacy indicators, but as they gain expertise in subject teaching and familiarize themselves with the available textbooks and other materials, attitudes toward the use of ICT to develop information literacy decline. Given the importance of developing these skills in children, this attitudinal trend needs to be investigated further, and in our opinion, quickly reversed. In other words, explicitly preparing teachers to use ICT to develop information literacy skills in children should be a clear training objective.

Our results also indicate that although student teachers who received formal ICT instruction in their training program scored higher on the self-reported competency “Evaluate the usefulness of ICT teaching,” formal ICT training did not appear to impact the other information literacy indicators. This suggests that currently available ICT training programs do not address information literacy as conceptualized in the present study. As it happens, the OECD (2015) has recommended increasing the focus of teachers’ training on information literacy to harness the potential of ICT in the classroom.

Interesting gender-related differences in self-reported information literacy competency were also observed. Although men and women viewed themselves as equally competent on many information literacy indicators, men felt more competent to “Share Web information related to the teaching practice” whereas women felt more competent to “Respect copyrights and privacy on the Internet”. Further studies are needed to explore these results more deeply.

Additionally, the factor “perceived control” (training, time, access to technology in the classroom) was scored at the lower end of the seven-point scale, suggesting potential action avenues for schools and initial teacher training programs. In particular, the qualitative results of this study support three practical implications for initial teacher training programs:

1. More instructional courses in information literacy
2. More ICT courses
3. Specialized ICT courses for individual teaching subjects.

Conclusion

This study has a number of limitations. First, the data collection was based on self-reports that were intended to capture future teachers’ perceptions and beliefs. Second, because our questionnaire was not validated, it cannot be used to test the appropriateness of the social
A quantitative and qualitative inquiry into future teachers’ use of information and communications technology

cognitive theories underlying the development of the items. Moreover, because this survey addressed future teachers, the use of ICT to develop students’ information literacy skills could differ substantially in a real school environment. We therefore suggest that future studies on information literacy skills be conducted in samples of practicing teachers.

References

Boubée, N. & Tricot, A. (2010). *Qu’est-ce que rechercher de l’information?* Villeurbanne, France : Presses de l’ENSSIB.

Authors

Stephanie Simard, *M.L.I.S., Ph. D.* is an academic librarian at the University of Québec in Trois-Rivières (UQTR). Her academic background and research interests focus on the use of digital technologies to develop information literacy skills. Email: Stephanie.Simard1@uqtr.ca

Thierry Karsenti, *M.A., M.Ed., Ph.D.* holds the Canada Research Chair on Technologies in Education. He is also a Full Professor at the University of Montreal. He is the director of CRIFPE (Research Center on Teachers and Teacher Education), which received the Canadian Education Association Whitworth Award for Best Education Research Center in Canada. Email: thierry.karsenti@umontreal.ca

This work is licensed under a Creative Commons Attribution 3.0 License.
Abstract

Both media and digital literacies are essential for the 21st century. Consequently, several governments have integrated technologies with school curriculums. Recently, ICT integration efforts, particularly with the digital tablet, have multiplied. Several academic uses of the tablet are explored, and some raise questions. This is the case of note taking as viewed in a single Quebec high school. Which application should students use, and should it be the same one for all subjects? Is it effective? Which strategies should be promoted? These are not trivial questions where educational success is concerned. Whereas note taking using certain technological tools has already been studied, little research has focused on with the use of a digital tablet. Students who use a tablet daily were asked a series of questions related to note taking. Our analysis suggests that teachers should play an active role in the appropriation of this tool.

Résumé

utilisent la tablette quotidiennement. L’analyse des résultats montre que les enseignants doivent jouer un rôle actif dans l'appropriation de cet outil.

Contexte

En 2015, l’adolescent interagit avec le monde différemment des générations précédentes (Merryman, 2013); Peluso (2012) souligne qu’il utilise des technologies dans presque tous les aspects de sa vie. À plusieurs moments de la journée, il exprime ses idées et ses émotions à ses amis et à sa famille sur les médias sociaux, il joue en ligne à des jeux électroniques et recherche des informations sur le web. Les technologies de l’information et de la communication (TIC) occupent aujourd’hui une place importante dans la vie des adolescents et il convient de les inclure dans le développement des compétences de base telles que la lecture et l’écriture, autant comme outil que comme sujets (Biancarosa & Snow, 2006). Les littératies médiatique et numérique (soit, en résumé, les savoirs et les compétences permettant d’exploiter les médias et les outils numériques de manière efficace et critique) deviennent des ressources essentielles afin de permettre à l’utilisateur de s’approprier rapidement l’information et de s’exprimer efficacement (Horton, 2007).

La section suivante présente un résumé des écrits scientifiques consultés sur la prise de notes. Vient ensuite la présentation de la méthodologie déployée et de l’analyse des résultats en regard des stratégies employées et de leurs effets sur la prise de notes auprès de 294 étudiants du secondaire qui utilisent la tablette numérique en classe sur une base quotidienne. Une discussion propose enfin une comparaison entre les résultats obtenus et certaines publications sur le sujet afin de répondre aux questions présentées suite à la recension des écrits.

Recension des écrits

Depuis plusieurs années, les recherches sur la prise de notes ont montré que les étudiants du secondaire prennent régulièrement des notes et qu’un processus cognitif précis est impliqué dans cette tâche (Bonner & Holliday, 2006; Einstein, Morris & Smith, 1985; Weiss, Banilower, McMahon & Smith, 2001). D’autres études (Kiewra et al., 1991 ; Peck & Hannafin, 1983)
soutiennent que les stratégies de prise de notes ne sont pas toutes équivalentes, que le rôle de l’enseignant est primordial en ce sens et que, jusqu’à présent, peu de recherches (Hutchison, Beschorner & Schmidt-Crawford, 2012; Karsenti & Fievez, 2013; Mang & Wardley, 2012) se sont intéressées à la prise de notes avec la tablette numérique.

Les processus cognitifs liés à la prise de notes

Les stratégies de prise de notes et le rôle de l’enseignant

Tous les enseignants doivent se sentir concernés par la prise de notes de leurs étudiants et savoir que les différentes façons de faire n’ont pas toutes la même portée pour générer des apprentissages (Chartrand & Blaser, 2008; Reuter & Barré de Miniac, 2006). Une attention particulière doit ainsi être accordée à la mise en place de scénarios favorisant l’acquisition de
stratégies efficaces; Peck et Hannafin (1983) expliquent que toutes les stratégies ne sont pas équivalentes et affirment, par exemple, que les étudiants qui construisent eux-mêmes leurs notes issues d’un texte à l’étude performent mieux que si elles leur sont fournies par l’enseignant. Par ailleurs, Kiewra et al. (1991) suggèrent de fournir aux étudiants du secondaire le squelette des notes afin d’orienter leur démarche. Cela leur permet d’éviter une prise de notes sans stratégie où l’étudiant produit un verbatim des propos de l’enseignant et des échanges de ce dernier avec son groupe-classe (Peck & Hannafin, 1983). Titsworth (2004) et Boyle et Forchelli (2014) expliquent que la prise de notes est un problème important, autant pour les enseignants que pour les apprenants. Selon ces chercheurs, l’enseignant peut grandement influencer la qualité des notes prises par les étudiants, entre autres en leur fournissant des indices organisationnels (soutien visuel adéquat, indices oraux de l’importance ou des relations entre des éléments, etc.).

Enfin, plusieurs stratégies de prise de notes ont été énoncées par Hartman (2002). On propose, par exemple, d’encoder ses propres notes sous la forme de cartes conceptuelles, de schémas faisant usage de flèches et de points, d’organisateurs graphiques ou de guides interactifs électroniques. Cela aide à personnaliser la construction individuelle de la connaissance (Hartman, 2002). Lorsqu'il recommande une stratégie de prise de notes ou intervient par rapport à cette activité des étudiants, l’enseignant doit être conscient que la tâche et le type d’examen soumis aux étudiants influencent leur façon de prendre des notes et de les réviser (Williams & Eggert, 2002). La recherche dans le domaine cognitif suggère aussi que l’on devrait favoriser des stratégies qui impliquent plusieurs structures cognitives, qui gardent l’apprenant actif et l’amènent à être critique à l’égard de l’information et des liens existants (Shapiro, 1998) comme ce semble être le cas de la prise de notes collaborative ou de la création de notes schématiques ou sous forme de cartes conceptuelles.
La prise de notes avec une tablette numérique

Peu d'études se sont spécifiquement intéressées à la prise de notes à l'aide de la tablette numérique (Hutchison et al., 2012; Karsenti & Fievez, 2013; Mang & Wardley, 2012). Cela s'explique par la récente apparition de l'outil sur le marché et la courte histoire de leur utilisation en classe (Karsenti & Fievez, 2013). Des recherches menées par Bui, Myerson et Hale (2013) sur la prise de notes électronique relèvent la présence des mêmes processus cognitifs d'encodage et de stockage que pour les notes manuscrites. Bui et al. (2013) ainsi que Rogers et Case-Smith (2002) se sont attardés à la prise de notes avec un clavier et soutiennent que la vitesse de frappe n'est plus un élément significatif dans la performance des étudiants. Le plus important serait plutôt la préparation et la formation de ces derniers à utiliser des stratégies efficaces pour favoriser l'apprentissage (Yang & Chiu, 2014). Une recherche menée récemment par Mueller et Oppenheimer (2014) arrive d'une certaine manière aux mêmes conclusions et met en garde contre la prise de notes trop textuelle que permet l’usage d’un ordinateur portable et de son clavier. Ces chercheurs expliquent clairement qu’il faut plutôt favoriser des stratégies qui obligent à interpréter, manipuler et reformuler l’information afin de favoriser l’apprentissage.

Les Tablet PC et les assistants numériques personnels (PDAs), considérés comme des outils intermédiaires entre le papier et l’ordinateur en raison de l’utilisation du stylet sur l’écran, représentent probablement des alternatives intéressantes au clavier de par leur capacité de reproduire l’activité de la prise de notes traditionnelle (Steinweg, Williams & Stapleton, 2010). Mang et Wardley (2012) soutiennent que la tablette numérique permet elle aussi de combiner la main et l’ordinateur et ainsi réduire considérablement le matériel physique à manipuler. De plus, ses options de sauvegarde, d’accessibilité et de partage en font un outil édifiant pour le milieu scolaire. La prise de notes réalisée avec la tablette numérique s’avère un dispositif engageant et se classe parmi les usages fréquents qu’en font les étudiants, tant individuellement qu’en collaboration (Karsenti & Fievez, 2013; Merryman, 2013; Wong, 2012).

La prochaine section présentera la méthode utilisée afin de tenter de répondre aux interrogations des enseignants d’une école secondaire intégrant la tablette quotidiennement dans ses activités en ce qui a trait à l’usage par les étudiants de cet outil pour la prise de notes.

Méthodologie

Cette recherche-action a été réalisée dans une école secondaire privée auprès d’étudiants qui intégraient la tablette numérique pour la deuxième année. Dans ce projet, l’équipe-école participe à la coconstruction de l’objet de connaissance. Au cours de la première année, deux groupes de la troisième secondaire avaient été formés pour mettre à l’essai cet outil. Giroux, Coulombe, Cody et Gaudreault (2013) décrivent la première année d’expérimentation. Au début de la deuxième année, l’école a procédé à l’intégration de la tablette dans 11 groupes d’étudiants, de la première à la quatrième année du secondaire. Le présent article traite des conditions qui ont prévalu au cours de cette deuxième année. La recherche présentée est descriptive au sens où elle «vise à découvrir de nouvelles connaissances, à décrire des phénomènes existants, à déterminer la fréquence d’apparition d’un phénomène dans une population donnée (incidence, prévalence) ou à catégoriser l'information» (Fortin, 2010, p. 32). Comme l'explique Fortin, ce type d'étude est particulièrement pertinent quand le niveau de connaissance sur un sujet donné est faible ou nul.
Pour recueillir les données de cette étude, un questionnaire a été élaboré en fonction des besoins informationnels manifestés par l’équipe-école. Il comporte quatre sections : 1) l’information sur les usages et l’appréciation de la tablette par les étudiants; 2) les pratiques collaboratives entre étudiants; 3) l’usage de la tablette en classe pour la prise de notes et 4) la gestion des documents au moyen de la tablette. Seule la section 3 dudit questionnaire est considérée dans cet article. Ce questionnaire a préalablement été validé auprès d’un petit groupe d’étudiants de la quatrième secondaire qui a interrogé la pertinence de certaines questions et proposé de nouveaux choix de réponse. Le questionnaire final a été informatisé à l’aide du logiciel LimeSurvey (https://www.limesurvey.org/). Un des chercheurs a visité chaque groupe selon un horaire préétabli avec les enseignants pour expliquer aux étudiants les conditions de leur participation (volontaire, anonyme, etc.), répondre à leurs questions le cas échéant et les guider vers l’URL du questionnaire pour qu’ils puissent répondre au questionnaire sur place à l’aide de leur tablette. Au total, 378 étudiants ont été invités à répondre au questionnaire de recherche. De ce nombre, 46 questionnaires ont été retirés pour l’une de deux raisons : l’étudiant avait seulement répondu à un petit nombre de questions ou l’étudiant avait clairement manqué de sérieux dans l’expression de ses réponses. Ainsi, les données de 332 questionnaires ont été conservées. Dans certains cas, des étudiants ont choisi de ne pas répondre à l’une ou l’autre des sections tout en répondant sérieusement au reste du questionnaire. Ces questionnaires ont été conservés pour l’analyse des sections complètement répondues. Parmi les 332 questionnaires conservés, 294 comportaient des réponses à toutes les questions concernant la prise de notes. Le groupe de répondants est composé de 161 garçons (54.8%) et de 133 filles (45.2%) dont l’âge moyen est de 14,1 ans (ÉT=1,19, Asy=-0,231, Apl=-0,575). Ces participants sont répartis inégalement entre les quatre premières années du secondaire. Le tableau 1 présente la répartition par année.

Tableau 1

<table>
<thead>
<tr>
<th>Année</th>
<th>Effectifs (n=294)</th>
<th>Pourcentage valide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondaire 1</td>
<td>63</td>
<td>21,4</td>
</tr>
<tr>
<td>Secondaire 2</td>
<td>70</td>
<td>23,8</td>
</tr>
<tr>
<td>Secondaire 3</td>
<td>90</td>
<td>30,6</td>
</tr>
<tr>
<td>Secondaire 4</td>
<td>71</td>
<td>24,1</td>
</tr>
</tbody>
</table>

Une majorité de participants (87,4%) avait déjà utilisé une tablette avant son intégration en classe. Sur une échelle de 1 «Je ne sais rien» à 10 «Je suis un expert», les répondants se sont attribué un niveau de compétence moyen de 8,13 (ÉT=1,47, Mé=8, Asy=-1,523, Apl=-4,494). La distribution est donc fortement anormale, car plus des 75% se qualifient de très compétents (8 ou plus). Il est très rare (moins de 3%) que des répondants s’attribuent un niveau de compétence de 4 ou moins. On peut observer un faible lien ($r_s= 0,160, p<0,01$) entre le niveau de compétence autoattribué par les participants et leur niveau académique.
Résultats

Les résultats mettent en évidence que la moitié des étudiants (47,6%, \(n=294\)) utilise «souvent» ou «très souvent» leur tablette pour prendre des notes en classe et que seulement 4,2% ne l’utilisent «jamais» à cet effet. La tablette apparaît donc être un outil fréquemment utilisé en classe pour prendre des notes. Les prochaines parties tentent de répondre aux questions des enseignants. Elles résument d’abord les informations colligées en ce qui a trait aux applications servant à prendre des notes pour ensuite aborder les stratégies relatives à cette fonction. La perception qu’ont les apprenants de la qualité des notes prises avec leur tablette versus celles manuscrites est ensuite présentée.

Les applications retenues pour la prise de notes

D’abord, les résultats montrent qu’une majorité d’étudiants prend des notes via la tablette électronique (74,4% des cas, \(n=293\)) et le fait toujours au moyen de la même application, peu importe le cours, le sujet ou le type de notes à prendre. Lorsqu’on les questionne à savoir si un ou des enseignants les ont conseillés quant aux applications à utiliser pour prendre des notes avec leur tablette, la moitié des répondants (52%, \(n=294\)) indique qu’au moins un de leurs enseignants leur a recommandé d’utiliser une application particulière. Une question ouverte demandait aux apprenants d’identifier leur application favorite pour prendre des notes et de justifier leur choix. La plus populaire est l’application Notes, fournie avec la tablette iPad et utilisée par 38,5% des répondants. Selon les étudiants, l’appropriation de son mode de fonctionnement est simple et rapide. L’application Capture Notes est la deuxième plus appréciée (31,4%) pour sa simplicité et ses nombreuses fonctionnalités. Cette application ne serait cependant pas toujours stable, car plusieurs ont éprouvé des difficultés occasionnelles à la faire fonctionner en classe. L’application NoteAnytime (11,4%), jugée efficace pour l’annotation de documents au format PDF et le transfert des notes entre pairs ainsi qu’Evernote (6,4%) choisie parce qu’elle simplifie la gestion des documents sont également citées par plusieurs apprenants.

Les stratégies de prise des notes avec la tablette

Dans le questionnaire présenté aux étudiants, plusieurs questions avaient été formulées en lien avec les stratégies employées par les participants pour prendre des notes. Les chercheurs voulaient, entre autres, savoirs si les participants avaient été conseillés par leurs enseignants et connaître les stratégies de prise de notes les plus fréquemment utilisées. Les participants ont été invités à se remémorer si un enseignant leur avait déjà proposé une méthode pour prendre de meilleures notes ou les avait encouragés à utiliser une stratégie particulière (par exemple faire une carte conceptuelle, remplir des notes trouées, etc.). Parmi les répondants, seulement 10,2% soulient que cela s’est produit «plus d’une fois» et 18,4% d’entre eux déclarent se souvenir «d’une seule fois». Une forte majorité (71,4%) d’étudiants ne se souvient pas avoir été conseillée par leurs enseignants à ce sujet.

Les participants ont ensuite eu à préciser la fréquence d’utilisation de certaines stratégies rendues possibles par la tablette pour compléter ou améliorer le contenu des notes prises. Le tableau 2 présente la fréquence d'utilisation de chaque stratégie proposée. Globalement, il apparaît qu’aucune stratégie n’est utilisée très fréquemment par une majorité d’étudiants. Cependant, toutes les stratégies proposées sont employées de temps à autre.
Tableau 2

Stratégies utilisées pour prendre des notes

<table>
<thead>
<tr>
<th>Stratégies</th>
<th>Fréquence d'utilisation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jamais</td>
</tr>
<tr>
<td>Faire un copier/coller depuis un manuel scolaire numérique</td>
<td>103 (35,0)</td>
</tr>
<tr>
<td>Faire un copier/coller depuis un site Web</td>
<td>64 (21,8)</td>
</tr>
<tr>
<td>Ajouter un dessin ou un schéma fait à la main avec ta tablette numérique</td>
<td>77 (26,2)</td>
</tr>
<tr>
<td>Ajouter une image provenant du Web</td>
<td>61 (20,7)</td>
</tr>
<tr>
<td>Ajouter un film/vidéo provenant du Web</td>
<td>159 (54,1)</td>
</tr>
<tr>
<td>Ajouter une photo prise en classe avec ta tablette numérique</td>
<td>79 (26,9)</td>
</tr>
<tr>
<td>Ajouter un film/vidéo enregistré en classe avec ta tablette</td>
<td>187 (63,6)</td>
</tr>
<tr>
<td>Collaborer pour compléter ses notes (à la maison)</td>
<td>71 (22,7)</td>
</tr>
<tr>
<td>Collaborer pour compléter ses notes (à l'école)</td>
<td>79 (25,1)</td>
</tr>
</tbody>
</table>

La stratégie la plus populaire apparait être d’ajouter une image provenant du Web. Environ le quart des étudiants (24,6%, n=294) utilise cette stratégie «souvent» ou «tous les jours» et plus de la moitié (54,8%) insère «rarement» ou «parfois» des images provenant du Web à leurs notes de cours. La collaboration à l’aide de la tablette (par exemple via Google Drive ou FaceTime) est une autre stratégie souvent utilisée, parfois à la maison et parfois à l’école. En effet, plusieurs étudiants utilisent leur tablette à la maison pour collaborer avec d’autres apprenants dans le but de rédiger ou d’améliorer le contenu de leurs notes de cours. Le quart (26,8%) des étudiants interrogés affirme «rarement» collaborer pour retravailler leurs notes de cours à la maison. Le même nombre (26,8%) déclare le faire parfois. Presque le quart des étudiants consultés (23,6%) disent ensuite collaborer «souvent» ou «tous les jours» à la maison pour retravailler leurs notes. La situation est assez similaire à l’école alors que 25,2% des étudiants déclarent ne «jamais» collaborer avec leurs pairs pour travailler leurs notes, 24,9% affirment le faire «rarement», 23,6% répondent le faire «parfois» et 26,2% indiquent utiliser leur tablette dans le but de collaborer pour prendre des notes «souvent» ou «tous les jours» à l’école. Une dernière stratégie semble populaire, soit effectuer un copier/coller depuis un site Web. La réponse la plus fréquente pour cette question est «parfois» (32,3%), mais 19,4% des étudiants disent faire usage de cette stratégie «souvent» ou «tous les jours».
Deux stratégies proposées aux répondants apparaissent n’être ni populaires ni impopulaires, soit «l’ajout d’une photo prise en classe avec ta tablette» et «l’ajout d’un dessin ou d’un schéma fait à la main avec ta tablette». L’ajout d’une photo prise en classe avec sa tablette est utilisé occasionnellement. La réponse la plus populaire est «parfois» (32,0%) et, 15,8% des répondants l’utilisent «souvent» ou «tous les jours». L’ajout de dessins réalisés sur la tablette pour compléter ses notes est aussi employé de temps à autre. Un peu plus de la moitié des étudiants font usage de cette stratégie «rarement» ou «parfois» (55,8%) et 18% le font «souvent» ou «tous les jours».

Trois stratégies ressortent finalement comme moins populaires chez les participants. La moins populaire est «Ajouter un film/vidéo enregistré en classe avec ta tablette». La majorité des étudiants n’utilise «jamais» cette stratégie (63,6%) et 30,2% des étudiants mentionnent le faire «rarement» ou «parfois». «L’ajout d’un film/vidéo provenant du Web» est aussi très peu employé par les étudiants. La réponse la plus populaire est en effet «jamais» (54,1%) et 40,8% des étudiants répondent l’utiliser «rarement» ou «parfois». La troisième stratégie la moins populaire consiste à faire un copier/coller depuis un manuel scolaire numérique. La majorité des étudiants (68,4%) n’utilise «jamais» ou «très rarement» cette stratégie.

Les notes avec la tablette vs les notes manuscrites

Les étudiants participants ont également comparé la qualité des notes prises avec leur tablette à celles manuscrites (papier et crayon). Le tableau 3 résume les réponses des étudiants. En général, les étudiants sont positifs en ce qui a trait aux notes prises avec la tablette. Ils affirment majoritairement (54,5%) que les notes prises avec leur tablette contiennent «beaucoup moins» ou «un peu moins» d’erreurs alors que 35,7% n’auraient «pas constaté de différence». De plus, près de la moitié (42,2%) des étudiants soutient que leurs notes sont «beaucoup» ou «un peu plus» complètes lorsqu’elles sont prises avec la tablette. Cependant, 20,8% des étudiants affirment le contraire, soit que leurs notes sont «un peu» ou «beaucoup moins» complètes lorsqu’ils utilisent leur tablette. Les étudiants sont aussi partagés lorsqu’il est question de la précision des notes. Ainsi, pour 37,1% d’entre eux, les notes prises avec la tablette seraient «beaucoup» ou «un peu plus» précises alors que 22,8% pensent le contraire. Une grande part des répondants (40,1%) n’observe «pas de différence» au niveau de la précision des notes.

Concernant la propreté, les étudiants attestent fortement (77,2%) que les notes prises avec leur tablette sont «beaucoup» ou «un peu plus» propres que les notes manuscrites. Pour une majorité d’étudiants (56,8%), les notes prises avec la tablette sont aussi «beaucoup» ou «un peu mieux» organisées. Finalement, les notes prises avec la tablette semblent faciliter l’étude chez certains étudiants. En effet, 42,3% répondent qu’il est «beaucoup» ou «un peu plus» facile d’étudier au moyen de notes prises avec la tablette. Près du tiers (28%) n’observe cependant «pas de différence» et presque autant (29,7%) pense au contraire qu’il est «un peu» ou «beaucoup plus» difficile d’étudier au moyen de notes prises avec la tablette.
Tableau 3

Appréciation de la qualité des notes prises avec la tablette par les étudiants

<table>
<thead>
<tr>
<th>Selon toi, ...</th>
<th>Fréquence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...les notes de cours que tu prends avec ta tablette numérique contiennent-elles moins d’erreurs que celles que tu prends avec un crayon et du papier?</td>
<td>69 (23,5) 91 (31) 105 (35,7) 20 (6,8) 9 (3,1)</td>
</tr>
<tr>
<td>...les notes de cours que tu prends avec ta tablette numérique sont-elles plus complètes que celles que tu prends avec un crayon et du papier?</td>
<td>42 (14,3) 82 (27,9) 109 (37,7) 44 (15) 17 (5,8)</td>
</tr>
<tr>
<td>...les notes de cours que tu prends avec ta tablette numérique sont-elles plus précises que celles que tu prends avec un crayon et du papier?</td>
<td>37 (12,6) 72 (24,5) 118 (40,1) 50 (17) 17 (5,8)</td>
</tr>
<tr>
<td>...les notes de cours que tu prends avec ta tablette numérique sont-elles plus propres que celles que tu prends avec un crayon et du papier?</td>
<td>143 (48,6) 84 (28,6) 53 (18) 9 (3,1) 5 (1,7)</td>
</tr>
<tr>
<td>...les notes de cours que tu prends avec ta tablette numérique sont-elles mieux organisées que celles que tu prends avec un crayon et du papier?</td>
<td>86 (29,3) 81 (27,6) 82 (27,9) 37 (12,6) 8 (2,7)</td>
</tr>
<tr>
<td>...est-il plus facile d’étudier avec les notes de cours que tu prends avec ta tablette numérique qu’avec celles que tu prends avec un crayon et du papier?</td>
<td>60 (20,5) 64 (21,8) 82 (28) 55 (18,8) 32 (10,9)</td>
</tr>
</tbody>
</table>

L’appréciation de la qualité des notes prises avec la tablette apparaît cependant varier selon le sexe et le niveau académique. En général, les garçons semblent profiter plus de la tablette que les filles lorsqu’il est question de la prise de notes (le test U de Mann-Whitney a été utilisé). Ils jugent ces notes plus complètes ($U=9101$, $p=0,021$), plus précises ($U=8356,5$, $p=0,001$) et plus propres ($U=7876$, $p<0,001$). Aussi, les garçons, plus que les filles, évaluent généralement que les notes prises avec la tablette sont mieux organisées ($U=8301$, $p=0,001$) et facilitent l’étude ($U=7115$, $p<0,001$). De plus, une différence significative se manifeste selon le niveau académique en ce qui a trait à la complétude des notes ($F(3;290)=6,099$, $p<0,000$, Éta Carré=0,059), à la précision ($F(3;290)=8,270$, $p<0,000$, Éta Carré=0,079), à l’organisation ($F(3;290)=3,360$, $p=0,013$, Éta Carré=0,036) et la facilitation de l’étude ($F(3;289)=3,360$, $p=0,009$, Éta Carré=0,039). Les résultats indiquent finalement que la différence entre les niveaux académiques n’est pas significative au plan statistique en ce qui a trait à la propreté.
(\(F(3;290)=2.592, p=0.053\), Éta Carré=0.026). Dans l’ensemble, les étudiants les plus jeunes sont plus nombreux à trouver avantageux de prendre des notes avec la tablette (un test Post Hoc LSD a été utilisé). Plus tard, au cours de la scolarité du secondaire, les différences entre les niveaux s’atténuent.

Discussion

Cette étude avait comme objectif de fournir des réponses à des enseignants du secondaire au cœur d’un projet d’intégration de la tablette numérique. Les données collectées nous amènent à discuter des trois éléments suivants : 1) les fonctionnalités de la tablette, 2) les stratégies des apprenants et 3) la qualité des notes. Dans l’ensemble, nous constatons que les résultats amènent à faire des liens avec les recherches réalisées sur cette thématique, notamment avec le rôle de l’enseignant, mais ouvrent également d’autres champs d’investigations tels que la qualité réelle des notes sur les plans linguistique et conceptuel.

Les fonctionnalités de la tablette

Les données collectées auprès des étudiants sur les conditions d’usage de la tablette numérique en contexte de prise de notes permettent d’affirmer qu’ils sélectionnent souvent individuellement une application et qu’ils l’emploient dans l’ensemble de leurs cours, et ce, indépendamment du contexte et de la discipline concernée. La simplicité et la stabilité d’utilisation motivent principalement leur choix. Les étudiants se privers ainsi de plusieurs avantages potentiels de la tablette. Par exemple, pour que celle-ci permette effectivement une économie de matériel (Mang & Wardley, 2012) et une combinaison de notes de tous formats (notes écrites, dessins, graphiques, cartes conceptuelles, vidéos, etc.), il apparaît important que les enseignants les initient aux fonctionnalités de la tablette et à la pertinence de diverses stratégies de prise de notes. Il serait aussi important que ces derniers suggèrent et soutiennent des applications appropriées en fonction des intentions pédagogiques, du contexte, de la discipline et des objectifs. Cela les conduirait à bien justifier leurs choix pédagogiques, à rendre les étudiants plus confiants et à favoriser un usage plus adéquat de la tablette lors de la prise de notes.

Les stratégies des apprenants

Mang et Wardley (2012) expliquent que pour les étudiants, la tablette a un fort potentiel collaboratif qui se manifeste dans la capacité d’échanger et de compléter entre eux le contenu des notes de cours. Ces propos trouvent un écho dans les stratégies adoptées par les étudiants. Bien que ce ne soit pas tous les étudiants qui collaborent pour la prise de notes, on constate qu’un pourcentage appréciable exploite ce potentiel de la tablette. Steinweg, Williams et Stapleton (2010) mettent en évidence la pertinence d’une approche collaborative de la prise de notes dans laquelle l’enseignant gagnerait probablement même à s’impliquer en participant activement, ne serait-ce que pour discuter des difficultés ou des défis rencontrés par les étudiants (Paris & Paris, 2001).

Une stratégie révélée par les étudiants attire notre attention. Il s’agit de l’utilisation du copier/coller à partir de matériel existant sur le Web. Bien qu’elle soit assez simple à réaliser et en apparence efficace pour obtenir des notes détaillées, Chui, Wu et Cheng (2013) incitent à la vigilance en soutenant que l’action de copier/coller ne permet pas d’exercer les fonctions...
d’encodage et de recodage utiles à l’apprentissage. Les résultats indiquent d’ailleurs que peu d’étudiants rapportent avoir été conseillés quant aux stratégies de prise de notes à mettre en place, ouvrant ainsi la porte à une présence plus directive de la part des enseignants, ce qui est nécessaire pour diriger la formulation, l’organisation et l’utilisation des notes (Buie et al., 2013). Ainsi, il incombe aux enseignants de toutes les matières d’informer les étudiants des spécificités de leur discipline et les guider dans le développement de stratégies efficaces de prises de notes (Boyle & Forchelli, 2014; Chartrand & Blaser, 2008; Reuter et Barré de Miniac, 2006). Ils pourraient également consulter les notes produites par les étudiants, ajuster les contenus, reformuler au besoin leurs explications et valoriser la collaboration entre pairs (Kam et al., 2005). De plus, en lien avec l’action copier/coller, il y a la nécessité d’exercer certaines compétences liées à l’exercice de l’esprit critique comme l’évaluation de la qualité et de la pertinence de l’information (Gagnon, Giroux, Cornut & Lessard, 2015) et de transmettre ces habiletés aux étudiants. Ainsi, en plus de conseiller les jeunes au sujet de la prise de notes, l’école devrait également songer à mieux les outiller concernant l’information en ligne, car maintenant qu’ils possèdent une tablette numérique, il devient possible de prévoir qu’ils en feront un usage plus fréquent et dans des contextes pédagogiques variés.

La qualité des notes

Les étudiants interrogés sur la qualité des notes prises à l’aide de la tablette mentionnent qu’elles paraissent mieux organisées, propres et plus complètes. Ces éléments génèrent probablement auprès des étudiants un climat de confiance envers l’usage pédagogique de la tablette qui les conduira à conserver de bonnes habitudes en classe. Il importe donc que les enseignants s’impliquent afin de structurer ces nouvelles habitudes et de les rendre efficaces puisque la prise de notes est avantageuse pour l’apprentissage (Bonner & Holliday, 2006; Catel, 2001; Einstein et al., 1985) et que toutes les stratégies mises en place pour y arriver ne sont pas équivalentes (Peck & Hanafin, 1983). Boyle et Forchelli (2014) montrent aussi que tous les apprenants ne sont clairement pas aussi efficaces et certaines clientèles sont en désavantage sur ce plan.

L’usage de la tablette offre aux étudiants un accès à un contenu exhaustif de leurs notes de cours (Merryman, 2013; Wong, 2012). Il n’est toutefois pas précisé si ces notes, qualifiées de complètes, signifient qu’elles se rapprochent davantage du verbatim de l’enseignant tel que souligné par Peck et Hannafin (1983). Si tel est le cas, cela montrerait encore l’importance d’une intervention de la part de ce dernier. La qualité réelle des notes prises avec la tablette, autant sur les plans linguistique et conceptuel, fera l’objet de la prochaine étape de ce projet de recherche dans le but de continuer à guider les enseignants.

Enfin, un dernier élément que nous qualifions de transversal ressort tant des données de terrain que des écrits consultés. Cet élément a trait à l’importance d’accompagner les étudiants pour une prise de notes efficace ; cela inclut l’utilisation de nouveaux outils (iPad et applications) et le développement de stratégies (Chartrand & Blaser, 2008; Paris & Paris, 2001; Reuter et Barré de Miniac, 2006). Les données collectées laissent croire que cela n’a pas nécessairement été le cas dans le cadre de la présente étude. Comme les enseignants étaient également en mode d’appropriation du fonctionnement de la tablette électronique, ils n’ont probablement pas pu anticiper toutes les adaptations nécessaires à leurs pratiques d’enseignement. Dans ce contexte, autant les enseignants que les étudiants s’adaptaient à une
nouvelle réalité de la classe. Cela vient en fait confirmer l’importance de la formation continue des enseignants et de leur accompagnement professionnel afin de soutenir les processus d’intégration des TIC.

Conclusion

Les résultats font état du contexte d’appropriation de la tablette numérique et de son potentiel pour la prise de notes dans des classes du secondaire. Nous concluons ce texte en faisant ressortir que des applications sur le iPad permettent de structurer les notes prises en classe, à condition que certaines stratégies soient mobilisées. Le partage de stratégies de prises de notes, appropriées au contexte disciplinaire et aux intentions pédagogiques mis de l’avant par l’enseignant, permettrait de maximiser les bénéfices pédagogiques de la tablette numérique. Il semble aussi primordial d’accompagner les étudiants dans le développement de cette tâche. Or, dans ce projet, les enseignants et les étudiants exploraient ce nouvel outil qu’est le iPad. Tous ignoraient la nature de son apport sur la prise de notes et sur les apprentissages. Néanmoins, les étudiants placés en mode exploratoire sur les potentialités de cet appareil électronique en classe se sont approprié des façons de faire. Ils ont appris à élaborer leurs notes de cours, à les partager et, selon l’avis de plusieurs d’entre eux, ces notes sont plus complètes et de meilleure qualité.

Enfin, des prospectives de recherche devraient nous permettre d’identifier les stratégies, les règles et les mécanismes en lien avec la prise de notes numériques, d’évaluer la qualité de ces notes sur les plans linguistique et conceptuel, d’identifier les réussites, les tensions et les problèmes associés à cette tâche scolaire et de réinvestir les résultats dans des activités de formation destinées au personnel enseignant.

Références bibliographiques

Stratégies de prise de notes à l’aide d’une tablette électronique chez des étudiants du secondaire

Auteurs

Patrick Giroux est professeur à l’Université du Québec à Chicoutimi où il est responsable des cours relatifs aux technologies éducatives dans la formation à l’enseignement. Il dirige le Laboratoire de formation et de recherche sur la littératie numérique de l’UQAC (LiNumLab) et est chercheur associé au CRIFPE. Courriel : pgiroux@uqac.ca

Diane Gauthier est professeure à l’Université du Québec à Chicoutimi où elle est responsable des cours en didactiques des sciences-technologies dans le cadre de la formation à l’enseignement au secondaire. Elle est directrice des programmes de maîtrise en éducation de l’UQAC, chercheure au LiNumLab et chercheure régulier au CRIRES. Courriel : Diane_Ganthier@uqac.ca

Nadia Cody est professeure à l’Université du Québec à Chicoutimi. Son enseignement et ses recherches portent principalement sur la formation pratique à l’enseignement et la supervision pédagogique. Elle est directrice du module d’éducation préscolaire et d’enseignement primaire de l’UQAC et chercheure au LiNumLab de l’UQAC. Courriel : Nadia_Cody@uqac.ca

Sandra Coulombe est professeure à l’Université du Québec à Chicoutimi. Son enseignement et ses recherches portent sur l’insertion sociale et professionnelle, la collaboration et la formation pratique et continue des enseignants. Elle dirige le module d’enseignement secondaire-professionnelle de l’UQAC et est chercheure au LiNumLab et chercheure associée au CRIFPE. Courriel : Sandra_Colombe@uqac.ca

Andréanne Gagné est doctorante en éducation à l’Université du Québec à Chicoutimi où elle poursuit une recherche à propos de la construction de l’identité professionnelle des enseignants associés. Courriel : andreanne.gagne@uqac.ca

Suzie Gaudreault est candidate à la maîtrise en éducation à l’Université du Québec à Chicoutimi. Son projet de recherche porte sur le potentiel de certains jeux vidéos pour le développement de compétences par des jeunes de 10-14 ans. Courriel : s.gaudreault@outlook.com

Cette création est mise à disposition sous un contrat Creative Commons 3.0.
Un projet de mise en place de la visioconférence en support à la formation des enseignants inuits : enjeux et bénéfices d’une recherche-développement en milieu nordique

Implementation of Videoconferencing to Support Inuit Teacher Training: Advantages and Challenges

Glorya Pellerin, Université du Québec en Abitibi-Témiscamingue
Gisèle Maheux, Université du Québec en Abitibi-Témiscamingue
Yvonne da Silveira, Université du Québec en Abitibi-Témiscamingue
Stéphane Allaire, Université du Québec à Chicoutimi
Véronique Paul, Université du Québec en Abitibi-Témiscamingue

Abstract

The research presented in this article proposes new training formulas for Inuit teachers from Puvirnituq and Ivujivik in Nunavik through the experiences of videoconferencing. It is based on a hybrid of face-to-face and distance training, where collaborative work is a priority. Optimal conditions for Inuit teacher training were identified through observing the various uses of videoconferencing from 2011 to 2015 - this despite the geographic remoteness, and the biculturalism and trilingualism of Inuit teachers, which originally made the integration of this technology difficult. The preliminary results highlight advantages and limitations of such an implementation by raising issues related to biculturalism, trilingualism, technology, management and governance.

Résumé

Fondée sur une formation hybride présentielle et distancielle et privilégiant le travail collaboratif, la présente recherche propose la mise à l’essai de nouvelles formules de formation des enseignants inuits de Puvirnituq et d’Ivujivik au Nunavik à travers une expérience de visioconférence. Bien que le contexte d’éloignement géographique ainsi que le biculturalisme et le trilinguisme des enseignants inuits aient rendu difficile l’intégration pédagogique de cette technologie, l’observation pendant 4 ans (2011-2015) de différentes utilisations de la visioconférence a permis d’identifier les conditions optimales de formation des enseignants inuits. Les résultats préliminaires mettent en évidence les avantages et les limites d’une telle
Implantation en faisant émerger les défis liés à la biculturalité, au trilinguisme, à la technologie, à la gestion et à la gouvernance.

Introduction

L’éducation au Nunavik : quelques repères

Depuis la signature de la Convention de la Baie-James et du Nord-du-Québec en 1975, il a été établi que la langue et la culture inuites occuperaient une place importante dans la scolarisation des enfants. Cette décision exprime un enjeu fondamental qui n’a pas perdu de son importance au fil du temps.

Depuis l’introduction formelle de la scolarisation, chacune des communautés dispose d’une école primaire et la plupart offrent aussi le premier et le second cycle du secondaire. L’enseignement est offert uniquement en inuktitut, langue maternelle, du préscolaire à la 2e
année du primaire. En 3e année, les élèves sont scolarisés en inuktitut et en langue seconde, anglaise ou française, selon la décision des parents, dans une proportion de 50 % du temps de classe. Leur scolarisation se poursuit dans cette même langue seconde jusqu’à la fin du secondaire. Selon le ministère de l’Éducation et de l’Enseignement supérieur et de la Recherche (MEESR) (2013), malgré l’investissement des acteurs engagés dans l’éducation au Nunavik, en 2012, seulement 22,2 % des étudiants du Nunavik auraient obtenu un diplôme de cinquième secondaire après sept années d’études, alors que pour l’ensemble du Québec, la diplomation au niveau secondaire après 7 ans se situait à 75 %. En ce qui concerne les études postsecondaires, selon les données de Statistiques Canada (2006), 21 % de la population détenaient un certificat d’une école de métiers et 8 % avaient un titre de niveau collégial ou universitaire au Nunavik. Comme il n’existe aucun établissement postsecondaire au nord du 51e parallèle, les étudiants désirant poursuivre leur parcours scolaire sont, par conséquent, forcés de s’expatrier et de fréquenter les institutions postsecondaires du Sud.

Au Nunavik, l’enseignement de la langue inuktitute et des savoirs propres à la culture inuite exige l’intervention d’enseignants inuits dans le processus de scolarisation des élèves. À ce jour, le personnel enseignant inuit (38,5 %) assume la scolarisation des élèves de 5 à 8 ans en inuktitut et l’enseignement des cours de culture et de langue première aux niveaux primaire et secondaire. Les Inuits constituent donc une partie importante du personnel enseignant dans les écoles du Nunavik. Selon le MEERS (2013), au préscolaire et au primaire, le nombre d’enseignants inuits (47,8 %) est presque équivalent au nombre d’enseignants non inuits (52,2 %) tandis qu’au secondaire, il n’en constitue qu’un peu plus du quart (26 %).

Les enseignants inuits en poste au Nunavik sont des membres de la communauté dont les compétences sont reconnues par les responsables de l’éducation du milieu. En général, ils n’ont pas de formation initiale à l’enseignement avant leur entrée en fonction à l’école. La plupart des enseignants inuits en exercice s’initient d’abord à la pratique en assistant un enseignant titulaire. Dans le contexte de notre projet, leur formation professionnelle initiale constitue une composante importante du projet de développement de l’éducation et se déroule à temps partiel dans les communautés.

Prise en main du projet d’école communautaire

C’est donc dans ce contexte de scolarisation particulier que les communautés de Puvirnituq et d’Ivujivik ont entrepris de prendre en main la formation de leurs enseignants en tant que partie intégrante d’un projet d’école communautaire en développement (Ivujivik et Puvirnituq, 1995). C’est en 1984 qu’une collaboration a pris naissance entre l’Université du Québec en Abitibi-Témiscamingue (UQAT) et les communautés. Les comités d’école (IPUIT) ont alors demandé le soutien de l’UQAT à leur démarche de développement d’une éducation qui réponde aux besoins de leur milieu dans le contexte de leur projet éducatif. Les deux partenaires ont entrepris de mettre en œuvre un programme de formation universitaire des enseignants inuits en exercice.

Développement d’un programme de formation des enseignants

Le programme de formation est élaboré en association étroite avec les partenaires des communautés. La gestion est réalisée en partenariat par une équipe formée des professeurs de
l’UQAT et des partenaires des communautés (Maheux, Kenuayak, Simard et Paradis, 1996). Cinq membres inuits et quatre membres universitaires font actuellement partie du comité de cogestion. Le programme de formation, à savoir, d’une part, les activités de formation elles-mêmes et, d’autre part, leur développement et leur gestion, constitue l’objet principal des interactions entre les partenaires engagés dans le processus. Le groupe de cogestion assure la définition, la mise en œuvre et l’évaluation du plan d’action et, de ce fait, le maintien de la pertinence des actions de formation et de recherche choisies dans ce contexte particulier d’éducation interculturelle. Une caractéristique importante de ce programme est la reconnaissance de l’identité culturelle des populations auxquelles il s’adresse (Paul, Crépeau, Legeault et Maheux, 2013).

C’est donc en réponse aux besoins des milieux scolaires concernés qu’une séquence de trois certificats (UQAT, 2014) a été conçue, évaluée et modifiée au tournant des années 2000, dans une perspective de mise en relation de la théorie et de la pratique dans le développement professionnel enseignant. Cependant, de nouveaux efforts doivent constamment être déployés, se poursuivre et s’intensifier afin d’atteindre des objectifs qui répondent aux exigences de la société contemporaine englobante et qui respectent l’identité culturelle inuite (da Silveira, 2009; Maheux, 2009; Université Laval, 2012). Trente-cinq enseignants en exercice, majoritairement des femmes âgées de 35 à 68 ans, sont actuellement actifs à ces différents programmes.

Offre des cours de 1984 à aujourd’hui

Depuis 1984, les activités de formation se déroulent dans un établissement scolaire de ces communautés. Les cours en présentiel sont donnés en dyade par 1) un professeur ou un chargé de cours de l’UQAT qui se déplace au Nord et 2) un co-enseignant inuit qui assiste le professeur dans la préparation et dans le pilotage des cours, en traduisant et en explicitant les contenus en inuktitut aux étudiants qui, rappelons-le, sont des enseignants en formation. Entre 1984 et 1993, le calendrier de formation prévoyait trois séjours d’un professeur dans les communautés pour offrir, avec son co-enseignant inuit, le contenu du cours à raison de sessions de 15-20 heures. À partir de 1993, le budget alloué à l’enseignement du même contenu a été réduit aux frais encourus pour deux séjours du professeur, ce qui donne lieu à deux sessions de 23 heures par cours de trois crédits. Divers travaux pratiques de mise en application, d’observation, d’analyse, et de réflexion sont demandés aux étudiants entre deux sessions. Lors de ces semaines de formation, ils assistent au cours et réalisent des travaux, idéalement avant le départ du professeur.

Le problème et les objectifs du projet de recherche-développement

La décision de réduire le nombre de séjours dans les communautés a eu pour conséquence de générer une concentration importante du contenu et une perte du temps d’échanges et d’intégration des savoirs et des concepts souvent abstraits et complexes. Dans ce contexte de formation, « la préoccupation de l’identité inuit transcende et est inhérente à toute démarche d’apprentissage » (Maheux, 2009, p. 215), ce qui ne peut être ignoré.

Jusqu’au début de la présente décennie, outre les conversations téléphoniques et les échanges par télécopieur, aucun moyen ne permettait un suivi du cheminement des étudiants dans la réalisation de leurs tâches. Les formules pédagogiques étant limitées par la distance qui
Un projet de mise en place de la visioconférence en support à la formation des enseignants inuit...
et des solutions à la fois techniques et pédagogiques qui tiennent la route. Pour relever le défi, les auteurs proposent une approche adéquate qui prévoit d’abord (1) de s’informer et d’analyser les besoins du public concerné, (2) de comprendre en profondeur le contexte dans lequel le dispositif doit être utilisé et (3) de mettre au point un dispositif original et respectueux du contexte interculturel. Dans la situation en cause, le dispositif de formation à distance est mis en place dans un contexte nordique, trilingue et biculturel. Le modèle systémique de l’innovation en trois phases de Depover et Strebelle (1997) est alors jugé pertinent en référence à la complexité de la situation et a servi de guide à la mise en place de la visioconférence.

Le modèle propose une démarche en trois temps : (1) l’adoption, (2) l’implantation et (3) la routinisation. Selon les auteurs, la phase de l’adoption consiste à prendre « la décision de changer quelque chose dans sa pratique par conviction personnelle ou sous une pression externe » (p. 80). La phase de l’implantation « correspond à la concrétisation sur le terrain de la volonté affirmée, lors de la phase d’adoption, de s’engager dans un processus conduisant à une modification des pratiques éducatives » (p. 81). Enfin, la phase de routinisation (ou d’installation de l’innovation) réfère « au fait que le recours aux nouvelles pratiques s’opère sur une base régulière et intégrée aux activités scolaires habituelles sans exiger pour cela un support externe de la part d’une équipe de recherche ou d’animation pédagogique » (p. 82). Le modèle de Depover et Strebelle (1997) propose donc un cadre pertinent à la représentation globale du projet et de son ancrage dans le milieu. Mais, qu’en est-il de sa réalisation?

Ely (1990) propose huit conditions facilitant l’adoption, la mise en œuvre et l’institutionnalisation des innovations technologiques en éducation. Ces conditions ont servi de cadre de référence à de nombreuses études (Ely, 1990). Elles ont été traduites et adaptées au Québec dans le cadre de l’initiative École Éloignée en Réseau (2006). Ces conditions sont : (1) l’insatisfaction relativement à la situation présente (sentiment d’inefficience ou d’inefficacité dans les approches actuelles); (2) la maitrise de connaissances et d’habiletés (connaissance suffisante des outils liés à l’innovation mise en place); (3) la disponibilité des ressources (accès aux ressources nécessaires : financières, humaines, matérielles, technologiques); (4) la disponibilité du temps (temps nécessaire pour implanter l’innovation et pour former les utilisateurs); (5) des incitatifs (motivation des utilisateurs, démonstration de la valeur ajoutée de l’innovation); (6) la participation aux décisions (implication tant des gestionnaires que des utilisateurs dans la planification et la conception de l’innovation); (7) l’engagement des dirigeants (démonstration aux utilisateurs de l’implication des dirigeants dans la mise en œuvre de l’innovation); (8) le leadership (participation active des dirigeants dans le soutien et l’encouragement à mettre en œuvre l’innovation).

Maintien de la relation interpersonnelle de formation

Au moment des premiers échanges avec les membres des communautés au comité de cogestion, la principale inquiétude exprimée concerne le maintien des relations directes entre les formateurs et les étudiants. Cette crainte est légitime. En formation à distance, les apprenants peuvent ressentir une certaine absence malgré la présence (Dussarps, 2014) et selon Jézégou (2010), la présence socioaffective serait « une condition propice à la présence cognitive » (p. 268). Peraya (2011) soutient également que l’absence physique de l’enseignant dans l’enseignement à distance peut affecter la relation éducative. Dans le cadre de ce projet, les activités de formation proposées sont donc planifiées selon une formule hybride. En effet, une
Un projet de mise en place de la visioconférence en support à la formation des enseignants inuit

Un projet de mise en place de la visioconférence en support à la formation des enseignants inuit
étudiants inuits ont été réalisées. Les entrevues auprès des étudiants inuits ont été effectuées en inuktitut par une étudiante inuite, préalablement formée. Aussi, trois professeurs ont pris note dans un journal de bord de leur expérience et ont remis ce matériel aux chercheurs. Une autre source de données réside dans un bilan de toutes les mises à l’essai consignées dans le rapport écrit de chacune des rencontres de cogestion (mensuelles) des programmes de formation à l’enseignement. Ces données concernent le déroulement de l’ensemble des activités réalisées avec le soutien de la visioconférence.

Validation préalable de la faisabilité du projet

Au printemps 2010, une première prise d’information (Depover et al., 2004) auprès des acteurs des milieux scolaires et des partenaires a permis de réaliser une analyse des besoins et des possibilités, et a contribué à s’assurer de la faisabilité technique du projet et de la volonté des partenaires de mettre à l’essai une nouvelle modalité de travail dans la formation des enseignants inuits. En accord avec la commission scolaire, le choix de mettre à profit la visioconférence a vite été privilégié compte tenu des limitations déjà évoquées du mode de formation en cours. Concernant les équipements requis, il faut mentionner qu’à la fin des années 2000, des achats de matériel de visioconférence de type Polycom ont permis à chaque école du Nunavik de disposer de l’équipement nécessaire pour réaliser ce type d’interactions. Toutefois, le signal Internet était alors insuffisant pour supporter une communication inter-écoles adéquate sur le territoire. Le matériel avait donc été rangé sur des tablettes. Au moment de réaliser les tests techniques en 2010, la situation avait évolué et le réseau Internet, alors desservi par Tamaani, permettait d’envisager une communication fluide tant au niveau de l’audio que de la vidéo.

La disponibilité de l’équipement nécessaire et l’accès à un signal Internet optimal, procurant une qualité du son et de l’image qui recrée de manière très proche un environnement de rencontre en présence, permettent de commencer les mises à l’essai. Il devient alors possible d’envisager des interactions plus fréquentes entre les deux rencontres en face à face et d’imaginer modifier le modèle de formation existant en variant la formule des rencontres, et ce, à un coût réduit. À cela s’ajoute la possibilité de supervision de stages en temps réel en raison de la mobilité de l’appareillage et de sa caméra motorisée permettant de suivre les mouvements des étudiants dans la classe.

Résultats préliminaires

Au cours des trois premières années du projet, différentes mises à l’essai de la visioconférence ont lieu, et ce, dans différents contextes. Selon le dernier rapport d’utilisation de la visioconférence, sur 81 utilisations, 49 sont réalisées avec succès, 27 connaissent des échecs de connexion et cinq ont lieu, avec retard. Afin d’assurer une réponse efficiente aux besoins de
formation des enseignants inuits et de maintenir le bon fonctionnement du dispositif, des rencontres périodiques entre les différents partenaires institutionnels et les collaboratrices des communautés sont organisées et les réajustements jugés nécessaires sont apportés.

Réunir les conditions de mise en place d’une innovation dans un contexte de formation d’enseignants inuits

Tableau 1

Faits et actions liés au processus de formation hybride illustrant les conditions d’Ely (1990, 1999)

<table>
<thead>
<tr>
<th>Conditions d’Ely (1990, 1999)</th>
<th>Faits et actions liés au processus de formation hybride</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Insatisfaction relativement à la situation présente</td>
<td>Communication difficile dans un contexte d’éloignement, intensifié par une formation dispensée et reçue dans la langue seconde des étudiants et des formateurs. Observation d’une difficulté d’atteindre les objectifs de formation dans ce contexte.</td>
</tr>
<tr>
<td>2 Connaissances et habiletés</td>
<td>Formation d’une étudiante inuite dans chacune des écoles concernées au rôle de ressource technique en lien avec l’utilisation et le fonctionnement du dispositif. Conception et distribution d’un procédurier imagé expliquant son fonctionnement.</td>
</tr>
<tr>
<td>4 Disponibilité de temps</td>
<td>Adaptation du rythme d’apprentissage lié aux différences inhérentes aux nouvelles modalités de communication. En présentiel, prise en compte des imprévus qui agissent sur la gestion du temps. Même pratique à distance. S’ajoutent les imprévus liés au dysfonctionnement technique. Gestion courante de l’utilisation de la visioconférence, dans le contexte nordique : réservation de la bande passante 48 heures à l’avance; en cas de problème, validation des connexions à</td>
</tr>
</tbody>
</table>
Conditions d’Ely (1990, 1999) Faits et actions liés au processus de formation hybride

<table>
<thead>
<tr>
<th>Conditions d’Ely (1990, 1999)</th>
<th>Faits et actions liés au processus de formation hybride</th>
</tr>
</thead>
<tbody>
<tr>
<td>quatre pôles différents par des appels téléphoniques (UQAT, Tamaani, les deux écoles); gestion des difficultés de mise en relation des différents intervenants; recherche de solution; en cas d’échec, transposition de la rencontre en conférence téléphonique.</td>
<td></td>
</tr>
<tr>
<td>5 Incitatifs</td>
<td>La valeur ajoutée de l’aspect visuel générée par les rencontres en visioconférence. La possibilité de voir les interlocuteurs enrichit la relation. La possibilité de se réseauter avec les étudiants inuits de l’autre communauté.</td>
</tr>
<tr>
<td>6 Participation aux décisions</td>
<td>Dans le cadre de la mise à l’essai de la visioconférence, implication des collaborateurs inuits, des membres du comité de cogestion des programmes de formation des enseignants des écoles de Puvirnituq et d’Ivujivik et des représentants des partenaires institutionnels. Décisions prises en partenariat, tel qu’établi avant la mise en place du dispositif, selon les objets en jeu. Observation et analyse des données en prenant en considération le point de vue des Inuits.</td>
</tr>
<tr>
<td>7 Engagement des dirigeants</td>
<td>Monitoring constant de la part de la chercheuse principale et des membres de l’équipe de recherche. Lien étroit avec le groupe de cogestion des programmes de formation des enseignants inuits. Soutien des partenaires institutionnels : soit en assumant le coût de la bande passante haute vitesse, soit en mettant son soutien technique à la disposition du projet, selon les besoins. Contribution des directions d’école à la mise en place de l’innovation.</td>
</tr>
<tr>
<td>8 Leadership</td>
<td>Leadership de la chercheuse principale par une présence constante lors des rencontres, par des déplacements dans les communautés pour valider la technologie et pour former les participants. À la commission scolaire, leadership du directeur général des services informatiques. Leadership du directeur du fournisseur Internet dans les mises à l’essai de la visioconférence. Leadership de l’agente de recherche pour la planification et la réservation des rencontres, le soutien à la mise en place. Attitude positive face à l’ajout du dispositif de la part de tous.</td>
</tr>
</tbody>
</table>

Pour les deux premières étapes de mise en œuvre de la visioconférence, soit les étapes de l’adoption et de l’implantation (Depover et Strebelle, 1997), la dynamique, attribuée en partie à l’équipe de recherche, permet une utilisation optimale de l’équipement, et ce, sans trop d’embûches. Par contre, au moment où les chercheurs tentent de se distancer, les huit conditions d’Ely ne semblent plus toutes réunies. En effet, tel qu’il en sera question au moment de la discussion, l’observation de la variation de l’engagement des dirigeants et du leadership des partenaires (conditions 7 et 8) semble contraindre la démarche de routinisation. Cette difficulté...
Deux projets de mise en place de la visioconférence en support à la formation des enseignants inuit

pourrait s’expliquer en partie par la réalité du contexte nordique affecté par des changements rapides, des mouvements de personnel fréquents au sein des organisations, notamment à la commission scolaire, et des conditions de communication difficiles. Ainsi, il apparaît nécessaire de réunir toutes les conditions pour une mise en œuvre efficace d’un dispositif comme celui proposé, et force est de constater que l’absence d’une ou plusieurs de ces conditions interfère grandement dans sa pérennité.

Décrire une pratique exemplaire de formation du personnel enseignant inuit

Afin de rendre compte de ces pratiques efficaces favorisant une formation des enseignants inuits qui répond davantage aux besoins exprimés, différentes utilisations de la visioconférence ont été mises à l’essai. Parmi elles, on compte des rencontres à distance qui permettent d’offrir des parties de contenu de cours ainsi que la supervision des stages qui est assurée en partie par la visioconférence. Elle est aussi mise à profit aux fins de réunions du comité de gestion des programmes et pour permettre un réseautage d’élèves de classes des communautés. Dans chacun de ces cas, différentes formules sont observées, chacune d’elles présentant ses avantages et ses limites. La section suivante expose brièvement ces différentes variations d’utilisation de la visioconférence.

Les cours en visioconférence

Le système de visioconférence étant désormais accessible, les professeurs l’utilisent dans le cadre de leurs cours selon différentes formules. La Figure 1 présente cinq exemples de rencontres à distance qui poursuivent des intentions distinctes. Le premier exemple présente possiblement le scénario idéal et celui qui est souhaité pour une optimisation de la formule hybride en expérimentation. On y observe une exploitation optimale de la visioconférence avant, pendant et après la formation en présentiel. Le deuxième exemple propose une nouvelle possibilité de rencontre entre les étudiants, autrefois plus difficile à concrétiser dans le contexte d’éloignement des communautés. Il démontre que les étudiants voient aussi un avantage pédagogique et collaboratif à utiliser la visioconférence, puisqu’ils ont demandé eux-mêmes la possibilité de réseauter pour réaliser un travail d’équipe. Le troisième exemple illustre les possibilités d’accompagnement des étudiants ayant des besoins spécifiques, ou nécessitant un soutien particulier. Un quatrième exemple consiste en une utilisation de la visioconférence qui permette à un étudiant de poursuivre son cours dont il aurait été absent en raison de causes imprévisibles : panne d’un avion, mauvaise température, décès d’un membre de la famille. En effet, il est arrivé que la technologie permette de pallier l’absence de certains étudiants de la communauté éloignée. Enfin, un cinquième exemple, toujours à l’étude, propose une utilisation hebdomadaire de la visioconférence, au cours de laquelle le coenseignant inuit dispense le contenu de formation, soutenu à distance par le professeur universitaire (Figure 1).
Un projet de mise en place de la visioconférence en support à la formation des enseignants inuit

Figure 1. Exemples de formules de rencontres à distance et leurs intentions.

La supervision de stage par la visioconférence

Inspirée d’un modèle de supervision de stage à distance (Pellerin, 2010), la visioconférence est mise à profit afin d’accompagner à distance les enseignants inuits en formation grâce à la mobilité du système en place dans les écoles. Ainsi que le présente le tableau suivant, la supervision du stage est dispensée en respectant trois moments clés : une rencontre préalable, une première supervision en présentiel et des supervisions (généralement 2) à distance en visioconférence (Tableau 2).
Tableau 2

Modalités des rencontres de supervision à distance et leurs intentions

<table>
<thead>
<tr>
<th>Rencontre préparatoire à distance</th>
<th>Première supervision en présence</th>
<th>Supervisions suivantes (2 ou plus) à distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparation du stage : présenter le plan de cours, présenter les objectifs, accompagner le stagiaire dans la préparation des rencontres de supervision.</td>
<td>Observer le stagiaire dans son milieu. Établir la relation de confiance avec le stagiaire et arrimer le regard avec le coenseignant inuit.</td>
<td>Favoriser la réflexion sur la pratique à chaque supervision. Le superviseur est à distance et le coenseignant inuit, en présence.</td>
</tr>
</tbody>
</table>

Suite à la première rencontre de préparation du stage, le superviseur (aussi chercheuse principale) se rend dans les écoles des étudiants à Puvirnituq et à Ivujivik pour mener une première supervision en face à face. Les intentions qui ont motivé ce choix sont, entre autres, de développer un lien de confiance avec le stagiaire, mais aussi d’arrimer les regards avec le co-enseignant inuit qui est, dans ce contexte, le seul à pouvoir valider les compétences liées à la maitrise des contenus. Les enseignements étant donnés exclusivement en inuktitut, la collaboration entre les deux superviseurs s’impose de facto.

Les observations et les rencontres de supervision suivantes sont, pour la plupart, assurées à distance par la visioconférence. Des limitations contextuelles rendent parfois la supervision à distance impossible : un enseignant de culture inuite pour garçons, dont les cours sont dispensés, soit à l’extérieur (enseignement de techniques pour la construction d’un igloo) ou dans un atelier adjacent (enseignement de techniques pour la construction d’outils pour traiter les peaux). La visioconférence est par ailleurs utile dans le cas d’un stage difficile qui nécessite un accompagnement personnalisé du stagiaire. Les rencontres (à distance) peuvent, en cas de besoin, être multipliées, ce qui est indispensable sans la technologie compte tenu des coûts associés aux déplacements.

Des rencontres de cogestion des programmes de formation

Dès le début du projet, les rencontres de cogestion des programmes, qui ont toujours eu lieu par l’entremise de conférences téléphoniques, sont assurées par la visioconférence. Les membres des deux communautés et ceux de l’UQAT poursuivent donc la gestion des dossiers courants, à raison d’une rencontre par mois, en y ajoutant un aspect visuel non négligeable. Lors des entrevues réalisées auprès de tous les membres, il est ressorti que ce moyen de communication permettait, entre autres, une meilleure concentration de l’attention sur l’objet de discussion et en facilitait ainsi les échanges : « It seems that participants are more aware of the discussion because of the visual indications, non-verbal signs ». Il devient possible de mieux interpréter les silences qui laissaient parfois les participants perplexes en l’absence d’indices visuels. Il est possible de constater que les membres sont en réflexion, qu’ils prennent connaissance des documents, ou qu’ils sont simplement sortis du local temporairement. Bien que tous s’accordent pour dire que la technologie téléphonique fonctionnait bien, les participants sont unanimes à manifester le souhait de ne pas revenir en arrière.
Une mise en réseau des élèves inuits

Le projet a également mené à des expériences de mise en réseau d’élèves des deux communautés. Deux initiatives ont tour à tour permis à des élèves de maternelle et de 1re année de développer leur communication orale en inuktitut, tantôt par la présentation à leurs pairs de chansons ou d’œuvres d’art, tantôt par des échanges permettant de mieux connaître la communauté de l’autre. Dans les deux cas, des discussions ont pu être menées, entre autres, pour identifier des liens de parenté entre les enfants et pour partager des particularités locales de chacune d’elles. Une des limites vécues dans le cadre de ces expériences de réseautage découle de problèmes techniques qui ont, à deux reprises, fait échouer les rencontres. Considérant la préparation nécessaire à ce type de réseautage, la gestion pour concrétiser l’événement et l’anxiété (positive) des élèves en attente de voir des pairs éloignés, la vision d’un écran noir qui ne collabore pas pour des raisons techniques pourrait contribuer à décourager les plus optimistes. Malgré tout, les enseignantes participantes ont persévéré et souhaitent répéter l’expérience.

Discussion des résultats

Après quatre ans de mise à l’essai, de rencontres et de réajustements, des enjeux liés à l’implantation d’une approche d’accompagnement par la visioconférence de la formation des enseignants inuits sont identifiés. Les huit conditions facilitant l’instauration d’innovations technologiques en éducation d’Ely (1990, 1999) guident l’identification de ces enjeux. Associées à ces conditions, nous en présentons ici trois catégories dont la mise en évidence s’avère essentielle dans notre contexte de formation : les enjeux liés au contexte biculturel et trilingue, ceux liés à la technologie et ceux liés à la gestion et à la gouvernance.

Les enjeux liés à la biculturalité et au trilinguisme

Deux des conditions pour réussir l’instauration d’innovations technologiques, selon Ely (1990, 1999), sont : (1) le désir d’améliorer une situation et (2) les connaissances et habiletés nécessaires à la réalisation d’un changement. Dans notre contexte, ces deux conditions se sont manifestées clairement au moment de l’adoption de l’innovation. Néanmoins, ce projet est mené dans un contexte où se côtoient l’inuktitut, l’anglais et le français et où la culture inuite et la culture universitaire doivent constamment s’harmoniser dans l’action. Le partenariat existant entre l’UQAT et les communautés de Puvirnituq et d’Ivujivik permet aux collaborateurs inuits de jouer un rôle essentiel dans le développement du projet et d’apprendre les rudiments de la recherche, la rigueur associée à une collecte de données structurée et à l’analyse de celles-ci.

Aussi, certaines situations démontrent toute l’importance que la technologie mise en place soit maîtrisée par tous les utilisateurs. Une méconnaissance du fonctionnement technique de la visioconférence par les utilisateurs conditionne les interactions. Par exemple, un étudiant souhaitant présenter un document à son professeur le positionne spontanément devant l’écran du téléviseur, et non devant la caméra, faisant en sorte que sur le moment, l’image perçue par le professeur ne correspond nullement à l’intention de l’étudiant. Une intervention est requise.

Ce projet contribue aussi à ajouter une nouvelle variable dans les relations interpersonnelles, soit celle d’une communication visuelle synchrone. En effet, lorsque le cours se déroule en présentiel, le professeur prend la parole et son co-enseignant inuit traduit au fur et à
mesure, accompagnant les étudiants dans leur appropriation et conceptualisation des savoirs en inuktitut, avec le support du professeur qui reprend et réexplique jusqu’à une compréhension des savoirs enseignés. En situation de communication à distance, les schémas communicationnels établis sont appelés à être adaptés. La distance virtuelle doit, bien que négligeable dans les faits, tout de même être prise en compte.

Certaines données recueillies justifient d’approfondir les effets de l’absence physique du professeur universitaire lors des cours à distance par rapport à l’interaction professeur-étudiant. Entre autres, nous observons que pour éclairer des incompréhensions, les étudiants se tournent parfois vers leur co-enseignant inuit, présent autour de la même table, au lieu d’interpeller directement le professeur comme ils le font souvent en présentiel. D’ailleurs, deux étudiantes l’expriment en ces termes lors d’une entrevue : « […] for those who are not speaking English (only inuktitut), it will be hard for them [because the professor is not with them] » ; « If we work together, we could do it. […] Yes, we usually ask one and other when we don’t understand. When we do that, it is easier ». Cette observation mérite certainement une analyse plus poussée. En fait, à cette étape, des questions sont soulevées : les participants ont-ils le même niveau de confiance envers le professeur éloigné physiquement que lorsqu’il est sur place dans le milieu, et l’acquisition des connaissances acquises l’est-elle au même titre qu’en présentiel?

Les enjeux liés à la technologie

Ely (1990,1999) identifie deux autres conditions importantes dans la réussite de la mise en place d’une innovation : (3) la disponibilité des ressources et (4) la disponibilité du temps. Dans notre contexte, le bon déroulement du projet est directement tributaire des ressources qui assurent le bon fonctionnement de la technologie en place et qui exercent un contrôle externe sur son utilisation, soient la commission scolaire et le gestionnaire du réseau Internet. En ce sens, bien que les résultats obtenus démontrent que la majorité des branchements effectués au cours des quatre années du projet se sont avérés positifs, plusieurs échecs répétés au cours de la dernière année (qui s’expliquent en partie par des travaux de rénovation dans un bâtiment) ont pour conséquence d’affaiblir la confiance et la motivation de plusieurs participants.

En fait, la perte de temps inhérente à la recherche de solutions est un facteur négatif considérable dans un contexte où chaque minute est précieuse pour les participants devant travailler avec un agenda surchargé. Il nous apparaît que l’enjeu principal dans ce cas est celui de la complexité liée à la recherche de solutions lorsqu’un problème technique survient. En effet, des appels téléphoniques doivent être logés de l’UQAT à quatre endroits différents, très éloignés les uns des autres, afin de déterminer d’où provient le problème : les deux écoles (utilisateurs), la commission scolaire (gestionnaire) et le fournisseur Internet. Par la suite, toute une équipe de techniciens s’affaire à chercher des solutions rapides pour tenter de rétablir les connexions. Une perte de temps en résulte inévitablement.

Il importe aussi de considérer que comme les milieux scolaires ne sont pas munis de salles de visioconférence fixes et qu’une installation in situ est nécessaire au moment requis, un temps supplémentaire doit être prévu pour s’assurer que tout soit correctement en place et bien branché.
Ne facilitant en rien les échanges, la difficulté liée à des facteurs spatiotemporels ou aux difficultés techniques contribue à créer certaines tensions et génère une grande perte de temps pour les utilisateurs. Bref, un service dédié qui peut répondre aux demandes de soutien technique contribuerait certainement à une action de formation plus performante.

Les enjeux liés à la gestion et à la gouvernance

Enfin, Ely (1990, 1999) souligne que (5) la présence d’incitatifs doit motiver les participants à s’engager dans la mise en place de l’innovation. À ce titre, la valeur ajoutée de l’utilisation de la visioconférence est vite perçue par les participants. Reconnaissant aussi l’importance (6) d’impliquer les principaux intervenants dans les prises de décision, celle (7) d’engager les dirigeants dans la mise en œuvre et enfin, celle d’octroyer un rôle certain de (8) leadership aux gestionnaires de l’organisation participante, il nous apparaît incontournable de faire équipe avec les partenaires du milieu, soit les enseignants inuits et les directions d’école, mais également avec les dirigeants de la commission scolaire. En effet, les gestionnaires en place doivent nécessairement être impliqués de manière à mobiliser les ressources autour d’objectifs communs. Selon notre analyse, il en va non seulement de la bonne gestion du projet, de la mobilisation des ressources humaines nécessaires, mais surtout de la pérennité de l’approche développée. En ce sens, la commission scolaire permet une utilisation optimale de ses installations de visioconférence et du service technique nécessaire pour assurer les branchements adéquats. Toutefois, le fait que les ressources humaines requises soient éloignées des écoles contribue souvent à ralentir, voire même à empêcher la tenue de certaines rencontres. En ce sens, est-ce qu’un responsable de la visioconférence ayant reçu la formation appropriée et la reconnaissance institutionnelle de ce titre pourrait être identifié dans chaque centre et agir en tant que répondant local? Cette requête est d’ailleurs exprimée par un participant : « It would have been much easier if we had a technician around ». Pour ce qui est de la gestion de l’utilisation de la visioconférence, nous sommes conscients qu’il faut une procédure pour assurer un certain contrôle d’une utilisation qui nécessite des réservations et de l’assistance technique. Par contre, il ne faut pas que cette procédure alourdisse indûment le processus et compromette l’atteinte des objectifs de formation.

Conclusion

Le projet de mise en place de la visioconférence en support à la formation des enseignants inuits de Puvirnituq et d’Ivujivik vise l’identification des conditions optimales de formation des enseignants inuits à travers une expérience pratique de mise à l’essai de la visioconférence, en complément de la formation offerte en présentiel, et la description d’une pratique exemplaire de formation du personnel enseignant inuit au Nunavik. À chacune des étapes de la démarche, les collaboratrices inuites ont pu enrichir leur formation, notamment aux méthodes de recherche qualitative et ont contribué à guider l’équipe entière en vue de l’atteinte des objectifs du projet. Par son caractère développemental et collaboratif, il a été possible d’amorcer des changements dans les pratiques, qui sont aujourd’hui transférables dans différents contextes.

L’analyse des données fait ressortir l’importance du respect de ces conditions à toutes les étapes du processus, notamment lors de la routinisation, de manière à assurer une pérennité de l’approche.

Au plan plus pragmatique, la mise en place de la visioconférence permet d’augmenter le nombre de rencontres autrefois tenues annuellement. Nécessairement, par une limitation des déplacements inhérents à toutes ces rencontres, il appert que l’utilisation de la technologie contribue à une réduction des coûts qui seraient normalement générés. Néanmoins, contrairement à une utilisation de la même technologie au Sud, des frais importants sont actuellement facturés à la commission scolaire pour l’utilisation d’une bande passante Internet nécessaire au bon fonctionnement de la visioconférence, ce qui constitue une limite importante à une plus large exploitation de la technologie. Il apparaît donc essentiel de s’intéresser à des moyens qui faciliteraient les initiatives dans un contexte où les enjeux liés à la technologie et à la gestion humaine et financière interfèrent dans des projets répondant aux besoins éducatifs de base d’une population.

Enfin, le projet permet de faire émerger de nouveaux besoins et de développer d’autres initiatives, notamment celle de créer une communauté de pratique de conseillers pédagogiques inuits (Projet École du Nunavik en Réseau, 2015). Outre les enseignants d’Ivujivik et de Puvirnituq, les enseignants des autres communautés du Nunavik pourraient bénéficier des retombées de ce projet de recherche-développement. Actuellement, des initiatives de formation à distance sont aussi réalisées dans d’autres communautés et ce projet constitue une opportunité majeure pour un partage des expertises entre les institutions de formation qui œuvrent au Nunavik.

Remerciements:

Références bibliographiques

Un projet de mise en place de la visioconférence en support à la formation des enseignants inuit

Pellerin, G. (2010). *Une étude descriptive d’un modèle de supervision de stage en distanciel appuyé par les TIC lors des stages se déroulant dans les milieux scolaires éloignés de leur université* (Thèse de doctorat). Repéré à https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/4391/pellerin_glorya_2010_these.pdf?jsessionid=0BB76CCBCF7EB63B10DAE82C2CFD4399?sequence=4

Annexe 1 : Carte du Nunavik

Figure 2. Carte du Nunavik (Société Makivik, 2015).
Auteurs

Glorya Pellerin, Ph.D., est professeure à l’Université du Québec en Abitibi-Témiscamingue. Son champ d’expertise se situe principalement dans le domaine de l’utilisation pédagogique des technologies de l’information et de la communication (TIC) et de la formation à distance. Elle s’intéresse également aux Premiers Peuples et aux Inuit, ainsi qu’à l’accompagnement en formation pratique. Courriel : glorya.pellerin@uqat.ca

Gisèle Maheux, Ph.D., est professeure associée en éducation à l’Université du Québec en Abitibi-Témiscamingue. Elle s’intéresse à la formation professionnelle des enseignants en lien avec le curriculum et la réussite scolaire, ainsi qu’aux méthodologies de travail en partenariat dans une perspective d’éducation interculturelle. Elle est membre émérite du Centre interuniversitaire de recherches et d’études autochtones (CIÉRA, Université Laval). Courriel : gisèle.maheux@uqat.ca

Yvonne da Silveira, Ph.D., est professeure retraitée de l’Université du Québec en Abitibi-Témiscamingue. Ses responsabilités de programmes et ses recherches ont notamment porté sur le développement scolaire en langue seconde en contexte de diglossie, la formation et la pratique enseignantes en milieu autochtone ainsi que la préservation de l’identité culturelle. Elle est membre du C.A. du FRQSC depuis 2013. Courriel : yvonne.dasilveira@uqat.ca

Stéphane Allaire, Ph.D., est professeur en pratiques éducatives à l’Université du Québec à Chicoutimi. Il est chercheur associé au CEFRIIO et au CRIRES. Il a été directeur du Consortium régional de recherche en éducation et rédacteur de la Revue canadienne de l’éducation. Il est présentement doyen de la recherche et de la création. Courriel : stephane_allaire@uqac.ca

Véronique Paul est étudiante au doctorat en histoire à l’Université du Québec à Montréal et agente de recherche à l’Université du Québec en Abitibi-Témiscamingue. Détentrice d’un baccalauréat en histoire et d’une maîtrise en études internationales, elle participe à différents projets de recherche concernant l’éducation en milieu autochtone. Courriel : veronique.paul2@uqat.ca

Cette création est mise à disposition sous un contrat Creative Commons 3.0.
A Connected Generation? Digital Inequalities in Elementary and High School Students According to Age and Socioeconomic Level

Une génération connectée? Inégalités numériques chez les élèves du primaire et du secondaire selon l’âge et le milieu socioéconomique

Simon Collin, University of Quebec in Montreal
Thierry Karsenti, University of Montreal
Alexis Ndimubandi, University of Quebec in Montreal
Hamid Saffari, University of Quebec in Montreal

Abstract

The objective of this article was to better understand the relationship between students’ age and socioeconomic level, and its influence on students’ digital uses. We conducted a quantitative study of 401 elementary and high school students in Quebec. Four independent variables were initially selected: two related to age (actual age and education level) and two others related to the socioeconomic environment (school poverty index and parents’ employment status). The dependent variable that represented students’ digital uses was the number of different technologies they used weekly. We conducted correlation tests followed by a linear regression analysis. Socioeconomic level appears to have a stronger influence on students’ digital uses compared to age, and explanations for this are proposed.

Résumé

L'objectif de cet article est de mieux comprendre la relation entre l’âge et le milieu socioéconomique des élèves dans leurs usages numériques. Nous avons mené une étude quantitative auprès de 401 élèves du primaire et du secondaire dans la région de Montréal. Quatre variables indépendantes ont été sélectionnées initialement, dont les deux premières renvoient à l'âge (l'âge et l'ordre d'enseignement) alors que les deux dernières renseignent sur le milieu socioéconomique (l'indice de défavorisation des écoles et la situation d'emploi des parents d'élèves). La variable dépendante permettant de rendre compte des usages numériques des élèves était le nombre de technologies qu'ils utilisent sur une base hebdomadaire. Nous avons procédé à une régression linéaire précédée de tests de corrélation. Il en ressort que le niveau socioéconomique semble influencer davantage les usages numériques des élèves que l'âge pour plusieurs raisons explorées dans cette recherche.
Introduction

In recent years, the idea of new student generations, which has widely pervaded the education field through concepts such as “digital natives” (Prensky, 2001a; 2001b), has been strongly questioned. The argument surrounding new student generations challenges the assumption that these students have comprehensive and homogenous digital uses and skills, thus creating a break with previous generations (Jones, Ramanau, Cross, & Healing, 2010). This conception has led to overvaluation of the age variable in determinations of students’ digital uses. Based on empirical results, numerous studies have qualified the idea of new student generations by proposing two main arguments: first, these generations would not be consistent in their digital uses (e.g., Jones et al., 2010); and second, age would be only one of many variables that influence students’ digital uses (e.g., Hargittai, 2010). On this second point, socioeconomic variables have been widely recognized as influential (Gire & Granjon, 2012). Yet the relationship between age and social origin, and their respective weight in determining students’ digital uses has been relatively unexplored, particularly in Francophone Canada.

In this context, the objective of this article was to better understand the relationship between age and socioeconomic level and how it affects digital uses by Quebec students. We begin by recalling the arguments and evidence in support of the idea of new student generations as well as those that qualify them. This is followed by a description of the methodology used and the presentation of the results.

Context

New Student Generations?

Gamer generation (Carstens & Beck, 2005), neomillennial learners (Dede, 2005), instant-message generation (Lenhart, Rainie & Lewis, 2001), new millennial learners (Oblinger & Oblinger, 2005), digital natives (Prensky, 2001a; 2001b), and net generation (Tapscott, 1998) are just some of the terms that have been used to describe the generations of students who were born at a time when digital technology was becoming more widespread, starting in the early 1980s. These terms, among which digital natives has flourished, indicate that new student generations apparently differ from previous generations, who were known as digital immigrants” (Prensky, 2001a; 2001b). Digital natives, who grew up with information and communication technology (ICT) and have continuously immersed themselves in it, would therefore have a favorable attitude toward digital technology and be comfortable with it (Boubée, 2011; Guichon, 2012; Octobre, 2009). For example, they would use it for learning, unlike digital immigrants, who seem to be “split between skepticism and interest and have trouble learning the technologies” (Brachotte, 2012, p. 12).

Numerous studies confirm a close relationship between new student generations and digital technology. Thus, in their questionnaire survey of Australian university students, Kennedy, Judd, Churchward, Gray, and Krause (2008) found that the participants had unlimited access to a variety of technologies: cellphone (96.4%), desktop computer (89.5%), digital camera (76%), high-speed Internet (72.9%), USB key (72.5%), MP3 player (68.9%), and laptop (63.2%). Only 0.6% (n=11) had no access to two of these technologies. Jones et al. (2010), in a study of university students in the United Kingdom, found that young participants (<35 years
old) had access to a wide variety of technologies, including the cellphone (97.8%), USB key (87.9%), and MP3 player (82.4%). These authors identified three main types of Internet uses for education: relational uses (81.5%) and access to resources and course material (93.6% and 89.9%, respectively). Kennedy et al. (2008) found similar results. In France, Octobre (2009) noted that young generations also had substantial Internet access (80% of 13–24-year-olds) and that they tended to access the Internet more for instant messaging and blogging, compared to the population average (63% and 70% of 13–17 year olds), and for other recreational uses such as network games, movie and music downloading, and video and multimedia processing tools.

The idea of new student generations stems from the observation that young people are excited about digital technology. However, the scientific community has criticized extensively this concept since then (e.g., Hargittai, 2010; Helsper and Eynon, 2009; Jones, Ramanau, Cross, and Healing, 2010; Kennedy, Judd, Churchward, and Krause, 2008) because it appears to overvalue the age variable as the guiding principle for students’ digital uses, providing a uniform overview of the generational front. Consequently, the disparity of digital uses by new student generations is undervalued, as well as the influence of other factors, such as students’ socioeconomic level, as described in the following sections.

Influence of Students’ Socioeconomic Level on Digital Uses

Although most students have unlimited access to a range of technologies, there are disparities when it comes to their digital uses, whether educational or not (e.g., Clark, Logan, Luckin, Mee & Oliver, 2009; Jones et al., 2010; Kennedy et al., 2008). Numerous studies agree that, in addition to age and generation, the digital use disparities within new student generations are linked to individual, sociodemographic, cultural, and socioeconomic variables (DiMaggio, Hargittai, Celeste & Shafer, 2004). Studies that have examined this issue have generally used digital inequalities (Collin, 2013) as a backdrop. Digital inequalities are defined as disparities between individuals, homes, and businesses in terms of access to, and use of, digital technology and the Internet for various purposes (OECD, 2010).

In the present study, we focus on socioeconomic variables, which have been recognized as influential on students’ digital uses. Thus, Livingstone and Helsper (2007) used interviews to investigate the role of age, gender, and socioeconomic level in Internet access and use in 1,511 teenagers aged 9 to 19 years in the United Kingdom. The results revealed impacts of age and socioeconomic level on Internet access: “Non-users are more likely to be found among the oldest age group [people of 18–19 years old] and the youngest age group [people of 9–11 years old], and they are most common among poorer households” (p. 676). Hargittai (2008, 2010) conducted two studies in an American sample of 1,060 first-year university students to investigate Internet uses according to parents’ education level, gender, race, and ethnic origin. A relationship was found between parents’ education level and the social network sites that students visited: students with at least one parent who had a university diploma used Facebook, Xanga, and Friendster regularly. They were not as active on MySpace, which was visited by more students whose parents had not graduated from high school.

Hargittai’s second study (2010) revealed the impact of socioeconomic level on students’ understanding and use of the Internet. Students with the lowest socioeconomic status had poorer Internet skills: they participated in few online activities compared to students at higher
socioeconomic levels. Students with higher economic status also spent more time on the Internet, visited a greater variety of sites, and had a better understanding of the Web. Gire and Granjon (2012) analyzed the digital habits (watching TV and videos, playing video games, and using the computer and Internet) of 1,577 young French individuals aged 15 to 34 years. The authors identified five screen user profiles: screenagers (marked TV and new screen consumers), computer-centered (daily computer and Internet users), moderates (moderate screen consumers), TV-centered (marked TV consumers) and no-TV (TV non-consumers). The results revealed the roles of gender, age, and socioeconomic level. Socioeconomic level was the most influential factor, with wide variation in the distribution of profiles accordingly. For example, only 19% of youth with at least one parent with postsecondary education belonged to the moderate or TV-centered profile, whereas 38% of youth with no parent with postsecondary education belonged to this profile. More youth from a more advantaged social environment tended to belong to the computer-centered profile. Gire and Granjon’s (2012) results concur with those of Eynon (2009), who examined Internet access and use according to age, income, education level, geographic location, and Internet experience using data collected in 2003, 2005, and 2007, by the Oxford Internet Institute from British individuals aged 14 years and over.

The results revealed the influence of sociodemographic and socioeconomic factors on Internet use. The percentage of Internet users decreased with age: 86% of 14- to 24-year-olds, 78% of 25- to 54-year-olds, 58% of 55- to 64-year-olds, 37% of 65-74 year olds and 25% of 75-year-olds and older for year 2007. However, Eynon (2009) noted that socioeconomic variables were strong determinants for Internet use. This was especially true for income and education level: in 2007, for example, 91% of respondents with an annual income of more than £50,000 used the Internet, compared to only 39% for those with an annual income of less than £12,500. In terms of education level, 90% of higher education graduates used the Internet, compared to 78% and 55% for high school and elementary school graduates, respectively. These results indicate that although age most probably plays a predominant role in students’ digital uses, socioeconomic variables should not be neglected.

This brings a new perspective to the concept of digital natives, which assumes that young people are consistent in their digital uses. The generational break that underlies this concept gives disproportionate weight to age at the expense of other variables, such as socioeconomic variables, as highlighted by Helsper and Eynon (2009): “The paper shows that breadth of use, experience, self-efficacy and education are just as, if not more, important than age in explaining how people become digital natives” (p. 503-504).

Objective

Despite its popularity in education research, the digital native concept does not fully account for the relationship between new student generations and their uses of digital technology. Focusing largely on the age and generation break, most studies appear to undervalue other dominant factors for students’ digital uses, such as their heterogeneity and socioeconomic level. Accordingly, the objective of this article was to better understand the relationship between age and socioeconomic level and its influence on the digital uses of students in Quebec, Canada. Similar studies conducted in the United Kingdom, the United States, Australia, and France (see section Influence of student’s socioeconomic level on digital uses) suggest that both socioeconomic level and age contribute to the variation in students’ digital uses, although their
respective weight remains to be determined, particularly in Quebec, where no studies have addressed this issue to date. In addition, the above-mentioned studies generally address high school or post-high school students. Only recently have a limited number of studies considered elementary schools (e.g., Simoni, Gibson, Cotten, Stringer & Coleman 2016; Heinz, 2016). Yet this is the education level where student populations are the most disparate (Bennett & Maton, 2010). In this respect, the originality of this study lies in the fact that it accounts for elementary as well as high school students, despite the methodological constraints, as we see in the next section.

Method

We used a quantitative method to achieve the study objective. We collected data from 401 student (210 girls and 191 boys) attending 18 classes in elementary and high schools belonging to two school boards in highly urbanized settings. The students completed a paper questionnaire in class. This questionnaire was designed to minimize the cognitive and language barriers that the students may confront. Given the variation in the students’ age (see age variable hereunder) and their different cognitive development stages, the level of understanding varied. Consequently, we took several steps to facilitate understanding of the questionnaire content, including wording the questions in plain language, reducing the number of questions, and adding visual aids (see Figure 1).

![Figure 1. Example of visual aids included in the questionnaire to help students understand the content.](image)

The questionnaire was commented on and validated by 12 elementary and high school teachers at a training session led by the authors. The final questionnaire contained two sections: the first addressed sociodemographic, socioeconomic, and cultural information to identify the students’ sociocultural profile; and the second addressed their digital uses, notably the types of technologies they used weekly (e.g., desktop computer, laptop, Internet using computer access, tablet, cell phone), the places in the home where they used these technologies (e.g., living room,
bedroom), frequency of use, number of years using the Internet, and Internet access locations (e.g., at home, at school, local library), the people in their entourage who used the Internet (e.g., parents, siblings, relatives), and their feelings of competence in using technologies. The researchers were always present to read the questions out loud and answer any questions as the students completed the questionnaire. For the analysis, we initially selected four independent variables, two related to age and two others related to the socioeconomic environment, as follows:

- **Age** – a continuous variable: the sample age ranged from 7 to 18 years.
- **Education level** – a dichotomous variable: either elementary (n=104) or high school (n=297).
- **School poverty index** – a categorical variable: calculated by the ministère de l’Éducation du Québec and used to distinguish non-disadvantaged, disadvantaged, and very disadvantaged schools. In our case, the sample included only schools from non-disadvantaged (155 students) and very disadvantaged (243 students) environments. This type of socioeconomically contrasted sampling is used to better highlight eventual variations in students’ socioeconomic profiles, and is widely used in education studies (e.g., Charlot, Bautier & Rochex, 1992) and in studies of digital technology in education (e.g., Daguet, 2000).
- **Parents’ employment situation** – a categorical variable: to distinguish students with only one working parent from those with two working parents.

For the dependent variable, we used the types of technologies that students used every week (see Figure 1 for partial data) to calculate the number of technologies used weekly. This created a new variable representing the diversity of technologies used. This is a reliable variable that can be used to examine the variation in digital uses, as in many studies (e.g., Hargittai, 2010; Helsper & Eynon, 2009; Livingstone & Helsper, 2007; Wei, 2012). We then conducted correlation tests to determine relationships between the four independent variables, and to identify cases of collinearity. Finally, we conducted a linear regression to better understand how the relationship between students’ age and socioeconomic level influenced their digital uses.

Results

We begin by painting a descriptive portrait of the students’ digital uses. Next, we differentiate the uses according to the four independent variables. We then present the correlation and linear regression results.

Descriptive Portrait of Students’ Digital Uses

Only two of the 401 students surveyed (.49%) reported having no access to any technologies on a daily basis. Most students used four (19%), five (25.4%), or six (19.3%) different technologies weekly. Students who used fewer than four per week made up the second largest group (23.6%). At the other end of the spectrum are students who used more than six different technologies weekly (12.6%). Overall, students used 4.7 different technologies weekly on average, with a standard deviation of 1.6, revealing a use continuum rather than distinct categories.
More specifically, the desktop computer (57.8% of respondents) has been largely replaced by the laptop computer (84.8%), and some students used both technologies weekly. A small majority of students used the cellphone, IP telephony (e.g., Skype), and the tablet weekly (52.4%, 57.1%, and 51.9%, respectively). Most students used the Internet daily (67.3%), or at least twice a week (25.8%).

Furthermore, 61.7% of students had access to one or more of these technologies in their room at home, in addition to the common rooms, thus multiplying use opportunities at home. Moreover, the home was by far the most frequent location (96.2%), followed by the school (55.3%), and friends’ homes (44.8%). Other public places provided technology access points for some students: local libraries (33.3%) and cybercafes (18.2%). On average, students had 2.4 technology access points, indicating that the home and school are not the only locations to provide digital learning opportunities.

In terms of experience, most students started using the Internet between age 8 and 11 years, and 32.6% of the remaining students had started using the Web at an even younger age. Moreover, 74.8% felt that they had good technological skills, suggesting strong feelings of competence, although it is impossible to infer their actual digital competence.

Finally, 68.9% of students had four or more people (e.g., parents, brothers, or sisters) in their daily environment who used the Internet, which would provide additional opportunities to model and accompany their digital uses, albeit depending on the particular types of use and skills. Inversely, only 0.3% of students had no one in their daily environment who used technologies. In other words, if young people are indeed “big” technology users, the technology “use vs. non-use” criterion does not suffice to distinguish them from other people in their social surroundings, except for a small percentage of the sample.

This global portrait helps identify the main trends across our sample. However, beyond this global portrait, and in line with our research objective, we further analyzed the data to obtain a descriptive portrait of the students’ digital uses according to age and socioeconomic level.

Descriptive Portrait of Students’ Digital Uses According to Age and Socioeconomic Level

In a first attempt to determine the relationships between students’ digital uses, age, and socioeconomic level, we looked at the distribution of the number of technologies they used weekly with respect to the four independent variables: age, education level, school poverty index, and parents’ employment situation.

To account for age, we considered two ages: 11 years and 16 years (see Figure 2), corresponding to age at the end of elementary and high school in Quebec, respectively. We noted that most 11-year-olds (71.8%) used from two to four different technologies weekly. In contrast, 16-year-olds were spread out relatively evenly between three and seven different types of technologies being used weekly, showing greater diversity in terms of technology use as well as greater heterogeneity within this subsample.
Figure 2. Number of technologies used weekly with respect to students’ age.

Regarding education level, we noted that more elementary students used two to four technologies weekly compared to high school students (see Figure 3). In contrast, more high school students used five or more technologies weekly compared to elementary students.

Figure 3. Number of technologies used weekly with respect to students’ education level.
Concerning the school poverty index, the distribution between students from very disadvantaged environments and from non-disadvantaged environments differs slightly from the distribution between age and education level (see Figure 4). Thus, students from very disadvantaged environments dominate the range from zero to three technologies used weekly. The reverse trend is observed for the range from four to five technologies used weekly, indicating that students from non-disadvantaged environments used more technologies weekly. However, some rebalance appears for the use of six, seven, or eight technologies weekly, where these two subgroups are about equally represented. In other words, beyond six technologies weekly, socioeconomic level no longer differentiates the students.

![Figure 4. Number of technologies used weekly with respect to the school poverty index.](image)

Finally, parents’ employment situation shows a trend similar to that for education level. Students from families with only one working parent are more strongly represented in the one-to-five uses category than students from families with two working parents (with the exception of three technologies/week). In contrast, students with two working parents are more strongly represented in the six technologies weekly category (see Figure 5).
A Connected Generation? Digital Inequalities in Elementary and High School Students

Figure 5. Number of technologies used weekly with respect to parents’ employment situation.

Taken together, the number of technologies used weekly fluctuates according to the four variables, but with slightly different trends across the variables. More specifically, older high school students from non-disadvantaged environments and with two working parents used a greater variety of technologies than other students. However, these descriptive results do not allow for determining the specific or cumulated influence of the variables on the diversity of technologies that the students used. Therefore, to understand the influence of age and socioeconomic level on the number of technologies used weekly by students, we used both correlation and linear regression analyses.

Influence of Age and Socioeconomic Level on the Variation in the Number of Technologies Used Weekly by Students

In this section, we begin by presenting the results of the preliminary statistics followed by the results of the linear regression.

Preliminary statistical analyses. We begin with the correlations between the four independent variables: age, education level, school poverty index, and parents’ employment situation. As shown in the correlation matrix in Table 1, parents’ employment situation is negatively and weakly correlated to age (r=-.17, p<.01), as are school poverty index and age (r=-.10, p=.04). In contrast, education level is strongly correlated to age (r=.63, p<.01), indicating that these two variables are collinear.
Table 1

Intercorrelations Between Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age</td>
<td>.63</td>
<td>-.10</td>
<td>-.17</td>
</tr>
<tr>
<td>2. Education level</td>
<td>.01</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>3. School poverty index</td>
<td>-.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Parents’ employment situation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To further examine the relationship between these two variables, we conducted a linear regression using the number of technologies used weekly by students as the dependent variable. It appears that although education level explains part of the variance in the number of technologies used weekly (β=.17, t(236)=3.41, p<.01), this relationship becomes insignificant (β=.08, t(236)=1.28, p=.20) once age (β=.13, t(236)=2.02, p=.04) is included in the regression model. We therefore excluded education level from the final regression model, which includes three predictive variables. Two of these are related to socioeconomic level (school poverty index and parents’ employment situation) and one corresponds to age (actual age of respondents).

Final linear regression model. The final linear regression model included three steps: inclusion of age, addition of the two socioeconomic variables, and measurement of the double interactions between the socioeconomic variables and age. An overview of the model, presented in Table 2, shows that each step contributes significantly to increase the portion of the variance in the number of technologies used weekly that is explained by the model.

Table 2

Summary of Regression Models

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R²</th>
<th>R² adjusted</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.16<sup>a</sup></td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>2</td>
<td>.26<sup>b</sup></td>
<td>.07</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td>3</td>
<td>.31<sup>c</sup></td>
<td>.10</td>
<td>.08</td>
<td>.04</td>
</tr>
</tbody>
</table>

We note that age explains 2.5% of the variance and that the socioeconomic variables explain 4.4%. Thus, the cumulated variables age and socioeconomic level significantly explain 6.9% of the variance in the number of technologies used weekly by students (F(3)=5.54, p<.01). Furthermore, their interaction adds 2.7% of the explained variance, which is significant, for a total of 9.6% of the variance explained by the final model (F(5)=4.71, p=.04). This corresponds to a small yet non-marginal predictive value.

It is important to note, however, that at step 3 of the model, age and the school poverty index do not interact. Therefore, each makes a distinct contribution to the prediction, as shown in Table 3.
Table 3

Multiple Linear Regressions for Age and the School Poverty Index with Respect to the Number of Technologies Used Weekly by Students

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>A</th>
<th>β</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age</td>
<td>.13</td>
<td>.16</td>
<td>2.42</td>
<td>.02</td>
</tr>
<tr>
<td>2</td>
<td>Age</td>
<td>.17</td>
<td>.21</td>
<td>3.16</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Parents’ employment</td>
<td>.56</td>
<td>.17</td>
<td>2.55</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>School poverty index</td>
<td>.50</td>
<td>.14</td>
<td>2.19</td>
<td>.03</td>
</tr>
<tr>
<td>3</td>
<td>Age</td>
<td>.18</td>
<td>.22</td>
<td>3.36</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Parents’ employment</td>
<td>.43</td>
<td>.13</td>
<td>1.92</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>School poverty index</td>
<td>.61</td>
<td>.17</td>
<td>2.64</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>Age x parents’ employment</td>
<td>.28</td>
<td>.17</td>
<td>2.52</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>Age x school poverty index</td>
<td>-.09</td>
<td>-.05</td>
<td>- .83</td>
<td>.41</td>
</tr>
</tbody>
</table>

Concerning the interaction between age and parents’ employment situation, a *simple slope* analysis indicates that the double interaction is significant only for families with two working parents ($R^2_{\text{adjusted}}=.09$, $F(2)=6.71$, $p<.01$). In contrast, there are no significant differences according to age in families with only one working parent ($R^2_{\text{adjusted}}=.02$, $F(2)=2.41$, $p=.09$). In other words, the increase in the number of technologies used weekly with age is significant only for students with two working parents, unlike students with only one working parent, and corroborating the descriptive results.

Discussion

The objective of this article was to better understand the relationships between age and socioeconomic level, and its influence on the digital uses of elementary and high school students.

First, we drew a descriptive portrait of the students’ digital uses to determine how present digital technology was in their lives. The students had access to an average of 4.7 technologies per week. This is in keeping with the results of other authors, such as Kennedy et al. (2008), Jones et al. (2010), and Guichon (2012), to name a few. In terms of computer use, more respondents in our sample used a laptop (84.8%) than a desktop computer (57.8%). These results are similar to those of Guichon (2012), but contrary to those of Kennedy et al. (2008), who found that the desktop computer superseded the laptop, with 89.5% and 63.2% of respondents, respectively. This discrepancy between results may be partly attributable to technological changes, as Kennedy et al.’s study dates back to 2008. Most students in our study had ample Internet access and considered themselves to be competent in the use of digital technologies, which concurs with the results of Octobre (2009) and Guichon (2012).

We then drew a descriptive portrait of the variation in the number of technologies used weekly according to students’ age and socioeconomic level. This portrait reveals the impact of these variables on students’ access and use of digital tools: Older students from non-
disadvantaged environments used more technologies weekly than their younger counterparts. In terms of age, we noted that 16-year-olds used almost twice the number of technologies as 11-year-olds. Studies by Livingstone and Helsper (2007) and Eynon (2009) revealed a similar age trend in the access and use of digital technology. Concerning the role of the socioeconomic environment, our results show that students from disadvantaged environments used fewer technologies weekly. This corroborates the results obtained by Hargittai (2008, 2010), who established a relationship between parents’ education level and the number of social network sites that students visited: students from a higher socioeconomic background participated in more online activities and visited a wider variety of social networking sites.

Lastly, a linear regression model was tested using age, the school poverty index, and parents’ employment situation as variables to determine their interrelationships and the influence on students’ digital uses. The results indicate that age, both socioeconomic variables, and their interactions predicted approximately 10% of the variance in the number of technologies used weekly, corresponding to a small but present predictive value. More specifically, age and the school poverty index each explained a specific part of the variance, while parents’ employment situation intervened only when interacted with age, and only for families with two working parents. In contrast, students from families with one working parent were not distinguished from other students according to age.

Note also that the socioeconomic variables predicted a larger portion of the variation compared to age (4.4% vs. 2.5%, respectively). Gire and Granjon (2012) and Eynon (2009) also noted that socioeconomic variables were more determinant than sociodemographic variables (including age) for technology access and use. They found that social origin was more influential than age on screen consumption in 15- to 34-year-olds: although they used numerous screens, the distribution of user profiles according to age showed no notable trend. However, the profiles differed strongly according to social origin, represented by the parents’ education. Eynon (2009) determined that Internet use was strongly correlated to parents’ income and education. In sum, age cannot be the only guiding principle for students’ digital uses, as discussions among new student generations suggest.

Conclusion

These results have useful implications for education. Like previous studies, they challenge the idea of a “connected generation,” a concept that various researchers (Carstens & Beck, 2005; Dede, 2005; Lenhart, Rainie & Lewis, 2001; Oblinger & Oblinger, 2005; Prensky, 2001a; Tapscott, 1998) have described using different terms. Our results call for greater attention to students’ socioeconomic environment when designing initiatives to integrate digital technologies into education. Given that the socioeconomic environment is variable, it can generate more or less rich and diversified digital uses by students. One way for schools to respond would be to introduce media education courses to ensure some consistency in students’ uses of technologies for educational purposes.
References

Authors

Simon Collin is a professor at the Faculty of Education at the University of Québec in Montréal, Canada. He holds the Canada Research Chair in Sociocultural Issues of Digital Technology in Education. Email: collin.simon@uqam.ca

Thierry Karsenti holds the Canada Research Chair on Information and Communication Technologies in Education. He is also a professor at the Faculty of Education at the University of Montréal, Canada. Email: thierry.karsenti@umontreal.ca

Alexis Ndimubandi is a PhD student in Education at the University of Québec in Montréal, Canada. Email: ndimubandi.alexis@courrier.uqam.ca

Hamid Saffari is a PhD student in Education at the University of Québec in Montréal, Canada. Email: saffari_shahrbabaki.hamid@courrier.uqam.ca

This work is licensed under a Creative Commons Attribution 3.0 License.
The Interactive Whiteboard: Uses, Benefits, and Challenges. A survey of 11,683 Students and 1,131 Teachers

Le tableau blanc interactif : usages, avantages et défis. Une enquête auprès de 11 683 élèves et 1131 enseignants

Thierry Karsenti, Université de Montréal

Abstract

Over the past five years, the interactive whiteboard (IWB) has been massively introduced into schools across the province of Quebec, Canada. This study explores how the IWB is being used, and the associated benefits and challenges. Data on 11,683 students (from 4th year elementary to grade 12) and 1,131 teachers were collected with five instruments: 1) a survey questionnaire for all students, 2) a survey questionnaire for all teachers, 3) individual interviews with teachers, 4) group interviews with teachers, and 5) group interviews with students. Far from calling into question the need to integrate technology into education, the results reveal that certain tools, such as the IWB, may be more complicated and time-consuming to integrate than others. However, despite teachers’ reports of technical problems, the IWB appears to have real educational potential.

Résumé

Au cours des dernières années les tableaux blancs interactifs (TBI) ont été massivement introduits dans les écoles du Québec (Canada). Cette étude explore comment cet outil numérique est utilisé, de même que les avantages et les défis qui y sont associés. Les données ont été recueillies auprès de 11 683 élèves (de la 4e à la 12e année) et 1 131 enseignants avec cinq outils de collecte de données: 1) un questionnaire d’enquête pour tous les élèves; 2) un questionnaire d’enquête pour tous les enseignants; 3) des entrevues individuelles avec des enseignants; 4) des entrevues de groupe avec des enseignants; 5) des entrevues de groupe avec des élèves. Loin de remettre en question l’intégration des technologies en éducation, les résultats de cette étude révèlent plutôt que certains outils, comme le TBI, peuvent parfois être plus complexes et chronophages à utiliser que d’autres. Néanmoins, même si plusieurs enseignants ont souligné les nombreux problèmes techniques, le TBI comporte un grand potentiel éducatif.
Introduction

At the 2003 World Summit on the Information Society, Kofi Annan proclaimed that rapid technology advancements can “propel” us to “improve standards of living for millions of people on this planet.” He also foresaw that the power of these tools will be increasingly felt in economic, societal, and educational spheres. In Quebec, across Canada, and around the world, more and more classrooms feature an interactive whiteboard (IWB) (Figure 1). Also called an IW or an interactive digital whiteboard (IDW), it is an electronic whiteboard that displays content projected by a computer, tablet, or other source. The IWB combines touch (pen-and-finger) control of the screen with computerized input from a variety of devices operated by teachers or students. However, while the IWB has become practically standard in the education systems of certain American states, and countries such as Australia—and especially Great Britain, where they are present in 100% of elementary schools (Kitchen et al., 2007) and 72% of high school classrooms (Lee, 2010)—IWBs began to be introduced into Quebec’s education system only in the last five years.

The usual justification for this massive introduction of technologies—put forward by both governments and businesses—is that IWBs can improve school and academic outcomes by improving teaching practices, by diversifying teaching resources (e.g., graphics, videos, audio), and by introducing more interactive teaching and learning activities (e.g. Karsenti and Collin, 2013). Nevertheless, questions have been raised about its actual usefulness for schools, particularly from a cost–benefit perspective.

Figure 1. Presence of interactive white boards (IWB) in classrooms in various countries (http://futuresource-consulting.com/2014-06-EducationHardware-1176.html).
As of 2016, not much is known about how the IWB is actually used or the real impacts on educational outcomes, and the results on the educational impacts are contradictory. Sometimes the impacts are modest, with no real significance for learning. Alternatively, many case studies, action research studies, and anecdotal accounts describe how exceptional teachers use the IWB (e.g. Raby, Bergeron, Tremblay-Wragg, Gagnon, Charron, 2015). These instructive studies predict how teachers might eventually integrate the IWB. However, there is usually a particular focus: how the IWB is used by exemplary teachers who have fully integrated the IWB into their teaching practice. There are very few accounts of failed experiments.

As Türel (2010, p. 3050) argued, we do not yet have enough rigorous empirical evidence on the impacts of educational technology on learning and academic performance. This calls for careful reflection on IWB uses, as well as the real educational impacts.

Theoretical Framework

What Does the Research Say About the IWB in Education?

Our literature review reveals that although many publications have addressed the IWB, very few have assessed the educational impacts empirically (see Khambari et al., 2014; Lopez, 2010; Türel, 2010). Despite the many pedagogical recommendations for teachers, only a handful of authors, such as Hennessy (2014), have explored the impacts. Several case studies (e.g., Kennewell and Beauchamps, 2007; Kennewell, Tanner, Jones, and Beauchamp, 2008) have examined small groups of highly tech-savvy teachers and their use of the IWB. Studies tend to sing the praises of the IWB, but often without solid grounds, somewhat like advertising flyers. This is not surprising, given that many reports are funded by IWB producers (Glover et al., 2005; Smith et al., 2005). Furthermore, the claimed benefits are not necessarily consistent with actual teaching approaches.

Among the touted benefits, the IWB is said to allow better teaching through demonstrations “at the front of the class” (Khambari, Hassett, Thomas, and Wong, 2014). However, in the current era of student-centered learning, many argue for less lecturing by teachers and more engaged students (e.g. Raby et al., 2015). Khambari et al. (2014) argue that teachers may feel caught between recommended open-ended, student-centered learning approaches and use of the IWB. However, Cutrim Schmid (2008) demonstrated certain benefits—as well as some major challenges—of IWB use for language teaching, and Slay et al. (2008) found plenty of challenges in using the IWB in South Africa, particularly underuse of its interactive features.

We also retrieved 15 literature reviews or meta-analyses on this topic, including Miller and Glover’s (2010) exhaustive synthesis of 100 sources. However, the authors’ objective was not to judge the methods used, but instead to draw an overall portrait (p. 1) of the results without assessing them. Furthermore, of the 15 reviewed syntheses, only four included a detailed description of the research methodology (DiGregorio & Sobel-Lojeski, 2010; Golonka et al., 2012; Saltan et al., 2009; Twiner et al., 2010), indicating a lack of rigor. Overall, these studies and meta-analyses mentioned two potential benefits of the IWB: better presentation of certain theoretical content using multisensorial techniques (Saltan et al., 2009), but at the same time using a lecture-style approach (see Littleton, 2010); and higher student interest, at least in the
short term (see Balta & Duran, 2015; DiGregorio & Sobel-Lojeski, 2010; Wall et al., 2005). Greater student motivation (see also Higgins et al., 2007, 2010; Hall & Higgins, 2005) was the most frequent finding across the studies, although appetite for the IWB appears to wane over time (see Balta & Duran, 2015; Dostal, 2011; Türel, 2010).

For example, Balta and Duran (2015) noted that, “As students get older, their positive attitudes toward interactive whiteboard technology decrease …” (p. 16). DiGregorio and Sobel-Lojeski (2010) propose that the strength and duration of the IWB impact depends primarily on the teaching practices used (p. 268). Harlow et al. (2010) showed that certain IWB uses add shared interactional spaces where students can save and retrieve their work (p. 239). In other words, the IWB has the potential to allow students to collaborate (see also Littleton, 2010; Saltan et al., 2009; Warwick et al., 2010), but only in certain circumstances. For Littleton (2010), the IWB, by enabling teaching at the front of the class, actually “saves time” (p. 287). Finally, Dostal (2011) notes that the IWB can also make it easier to archive and share written work. Nevertheless, few serious studies to date have demonstrated any real impacts of the IWB on academic achievement. Instead, they have generally found either no impacts (see, e.g., Lopez, 2010) or else minimal positive impacts for certain subjects, such as mathematics (see Swan et al., 2008), which could be attributed more to the attention paid by the participating students rather than the IWB itself. Others have found negative impacts (see Moss et al., 2010).

Türel (2010) and Khambari et al. (2014) contend that no study to date has concluded that the IWB has positive impacts on academic achievement. In fact, it is just the opposite: the many technical issues, combined with lack of support (see also Fekonja-Peklaj et al., 2015), tend to undermine both student and teacher motivation. Several of the reviewed meta-analyses underscored negative impacts of the IWB, such as wasting teachers’ time and the scarcity of technical support help (see Dostal, 2011). Other researchers say that teachers who use the IWB spend more time dealing with technological than educational issues (see Sundberg et al., 2012).

Overall, the findings lead to only two solid conclusions: greater student motivation—which diminishes with time—(see Higgins et al., 2007), and better presentations of theoretical content by teachers—albeit using a lecture-style approach (see Littleton, 2010).

A recent OECD report (September 2015) called “Students, Computers and Learning: Making the Connection” addresses issues of the educational use of the IWB. The impacts of information and communication technology (ICT) on education across 30 countries were examined, revealing that countries that were early adaptors of computer technology for education tend to show poorer learning outcomes. And it gets worse, as the more that students use new technology, the worse the learning outcomes: “…but students who use computers very frequently at school do a lot worse in most learning outcomes, even after accounting for social background and student demographics” (p. 3). Nevertheless, certain exceptions to this trend suggest that even though technology holds enormous potential, the teacher still plays a central role.

In Quebec and abroad, many instructive studies (accounts of practices, action research) have illustrated how teachers can appropriate the IWB and other technologies (see, e.g., Ersoy & Bozkurt, 2015; Raby et al., 2015). Although highly inspiring for future teachers, and for teachers who want to improve, these studies do not fully address the uses, benefits, and challenges of the
IWB in the classroom. Despite the scientific legitimacy of these studies, more extensive research is needed on actual IWB use, and on the real educational impacts, in order to guide policies and actions by government and education decision makers.

Method

Participants

The study participants included 11,683 students (from 4th year elementary to 5th year high school) and 1,131 teachers in Quebec schools. The students (6,211 girls, 5,472 boys) were from 10 to 18 years old, with an average age of 14.1 years; 88.4% were in high school ($n = 10,324$) and 11.6% (1,359) in elementary school (mainly 6th year). Of the teachers, 67.4% (634 women, 497 men) had from 11 to 25 years of teaching experience (see Figure 2). They taught a range of subjects in the Quebec education system. Participants were selected on a voluntary basis from schools in which the IWB was used in class. Data were collected from August 2014 to May 2015.

![Figure 2. Number of years of teaching experience for participating teachers.](image)

Data Collection Instruments

Data were collected from 12,814 participants who were currently in the education system (11,683 students; 1,131 teachers). Five instruments were used:

- A survey questionnaire for all students ($n = 11,683$)
- A survey questionnaire for all teachers ($n = 1,131$)
- Individual interviews with teachers ($n = 31$)
- Group interviews with teachers (8 groups of from 6 to 17 teachers)
- Group interviews with students (16 groups of from 8 to 24 students)
Data Treatment and Analysis

The questionnaires contained both Likert scale responses and open-ended questions. Responses were subjected to a mixed analysis. A quantitative analysis, including descriptive statistics, was conducted using SPSS 23 and the online survey tool SurveyMonkey. A complementary qualitative analysis of the open-ended questionnaire responses was conducted using QDA Miner, including a content analysis (see L’Écuyer, 1990; Miles & Huberman, 2003) with semi-open coding constructed from the participants’ responses concerning the main research issues (uses, benefits, and challenges).

The individual and group interviews were analyzed by content analysis, following L’Écuyer (1990) and Miles and Huberman (2003). Qualitative analyses were conducted using QDA Miner, a widely used qualitative data analysis tool (Karsenti et al., 2011).

Main Results

How Was the IWB Used by Teachers and Students?

The results revealed that 48.2% of teachers used the IWB “always” or “often” versus 39.3% who used it “sometimes” or “rarely” and only 12.6% who “never” used it (Figure 3).

![Figure 3. Use frequency of the IWB by teachers.](image-url)

The individual and group interviews provided a general overview of the use frequency. Teachers who “always” or “often” used the IWB explained that it “made it easier to present material to the class” (high school teacher). Others also found it easier to show information that they found online: “I can show my students all kinds of things that I find on the Internet” (high school teacher). Some teachers who used the IWB regularly found that it simply replaced the old blackboard, including one high school teacher who said they had no choice, as they no longer had a blackboard.”

Teachers who used it “sometimes” or “rarely” felt that it was overly complicated to use, and that the technological problems were daunting:
• “…sometimes, it’s not programmed… it takes a long time to do and I don’t have the time before class …” (high school teacher).
• “… because it doesn’t always work … I only use it when I have extra time …” (high school teacher).
• “… I sometimes use it … but I have my plan B … it hardly ever works …” (high school teacher).

Of the teachers who never used the IWB, some were put off by technical problems: “… I’ve been waiting now for over two months … the lamp doesn’t work anymore …” (elementary school teacher). Others felt that they didn’t need it to teach: “… I never asked for it … it’s complicated … and I don’t think it’s very useful … so, no … I don’t use it” (high school teacher).

With respect to student participation, did the teachers have their students use the IWB? The data revealed that only 4.0% “always” or “often” had their students use it, versus 23.4% who had them use it “sometimes” and 72.6% “rarely” or “never” (Figure 4).

![Figure 4. Use frequency of the IWB by students according to teachers.](image)

In the individual interviews, the teachers had many reasons for not having their students use the IWB:

• “… in high school … the classes are big … it’s hard to manage the class when you get everybody to the front of the room …” (high school teacher).
• “… it doesn’t work very well … and if on top of that I let the students use it … I think that it would never work …” (high school teacher).

We also asked the students how they used the IWB in order to compare their responses to those of the teachers (Figure 5). The responses showed little variation overall, confirming that they did not use the IWB very often. Thus, 4.4% of students felt that their teacher “always” or “often” let them use the IWB, with 12.9% “sometimes,” 29.5% “rarely,” and 53.2% “never” responses.
The group interviews with students provided further insight into why the teachers had them use the IWB:

- “… our teacher lets us go on the Internet sometimes …” (elementary school student).
- “… as soon as it stops working … she [the teacher] asks one of the students for help …” (high school student).
- “… when we do math … I sometimes come up to the front of the class and write the answers …” (high school student).

They also revealed why students were rarely asked to use the IWB:

- “… it’s not very interactive … the teachers just write on it …” (high school student).
- “… it’s usually not working … I don’t think that my teachers want us to touch it …” (high school student).
- “… if we touch it …, the teachers are going to think that it’s our fault that it doesn’t work anymore … so we don’t touch it …” (high school student).

Furthermore, we asked the teachers to describe the main ways that they used the IWB in class, revealing ten main uses (Figure 6). The most common (51.6% of teachers) was creating multimedia presentations with programs like Notebook or PowerPoint. This was followed by Internet searches (19.3%), video presentations (10.8%), presentation of class notes as PDG or Word documents (6.9%), and math and science demonstrations, particularly math (4.8%). Group corrections of written work, especially French texts (1.7%), presentation of digital books and textbooks (1.5%), interactive activities and exercises (1.4%), students’ oral presentations (1.2%), and geographic maps (0.8%) complete the list. Apparently, the IWB was used mainly to project content onto the screen, and not as an interactive digital tool to support teaching and learning, with only 2.6% of the main uses reported by teachers described as interactive.
What Were the Main Benefits of the IWB?

Both students and teachers came up with a substantial number of benefits. First, we asked all the students (11,683) and teachers (1,131) if they preferred the IWB or the traditional blackboard. The students were almost unanimously in favor of the IWB (99.2%) over the blackboard (0.8%). The group interviews with the students confirmed this:

- “… it’s definitely better … the teacher can go online …” (high school student).

Although a large majority of the teachers preferred the IWB (73.6%), they were notably less enthusiastic about using it in class, and the interviews revealed why some continued to prefer the traditional blackboard:

- “… it never works … it’s complicated … I’d prefer a blackboard and chalk …” (high school teacher).
- “… I have several groups … in some classes, it doesn’t work … so I have to prepare different lesson plans … I prefer not to use it …” (high school teacher).
- “… I never wanted it, I didn’t ask for anything … I don’t use it … I find it a waste of time …” (high school teacher).

We also asked the students and teachers more specifically about the benefits of having the IWB in the classroom (Figure 7). According to the students, the main benefit was permanent Internet access in class (23.5%). They found it amazing that they could “have Internet access through the whiteboard” (high school student). They also appreciated the visual support for teaching (19.1%), watching videos (12.2%), their greater motivation to learn (11.8%), more varied teaching strategies (9.3%), learning better and more (9.1%), saving time—when there were no technical problems (7.2%), having a more organized teacher (5.8%), communicating with classmates (1.3%), and doing interactive activities (0.7%).
The main benefit of having the IWB in the classroom, as reported by 29.2% of the teachers, was “finally, having Internet access in the classroom” (high school teacher). Other benefits (Figure 8) were visual support for teaching (18.8 %), and particularly multimedia presentations such as PowerPoint. Many teachers also mentioned higher student motivation (11.6 %). They also found that the IWB helped them diversify their teaching approach (9.5 %), usually enabled more effective teaching—as long as there were no technical problems (6.3 %), and was generally beneficial for learning (6.1 %), regardless of the subject being taught.

Some teachers said that, despite the extra time involved, the IWB helped them organize their work (5.9%), including planning lessons, managing documents, and so on. A few (4.0%) said that the IWB helped students concentrate.

Only 3.9% thought that the IWB could have positive impacts on students’ academic outcomes. A small number—particularly math and science teachers—emphasized the benefits for learning certain concepts (2.8%).

Some (1.3%) liked the ability to “communicate with others, in front of the students, from the front of the class …” (high school teacher). Only 0.6% mentioned interactivity as a benefit.

Figure 7. Main benefits of the IWB according to students.
Figure 8. Main benefits of the IWB according to teachers.

Specific Benefits of IWB Use

The large study sample (11,683 students) enabled performing more advanced statistical inferences. Briefly, the characteristics of a given population (i.e., students and teachers across Quebec) were induced from the population sample (i.e., the participating students and teachers). We then ran diverse statistical correlations. The results revealed some significant relationships (see Table 1), for instance, between the use frequency of the IWB by students and student-perceived impacts on variables known to be closely associated with academic achievement (academic grades, concentration in class, school motivation, overall satisfaction at school).

Table 1

<table>
<thead>
<tr>
<th>Academic grades</th>
<th>0.308**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration in class</td>
<td>0.265*</td>
</tr>
<tr>
<td>School motivation</td>
<td>0.367**</td>
</tr>
<tr>
<td>Overall satisfaction at school</td>
<td>0.312**</td>
</tr>
</tbody>
</table>

*p < 0.001; **p < 0.0001.

The results show that the more students used the IWB in class, the more positive the perceived impacts on their grades, school motivation, concentration in class, and overall satisfaction at school (Table 1). In line with previous studies, this indicates increasing impacts with more frequent use. Previous studies have also found that teachers who had their students use the IWB frequently perceived similar impacts, but this was not the case here.

The results of the present study do not allow concluding overall positive or negative impacts of IWB use on students’ academic achievement. In fact, only 3.9% of the teachers reported such impacts. However, the results in Table 1 reveal positive perceptions by the students.
Nevertheless, only 4.0% of the teachers said that they “always” or “often” had their students use the IWB. We may propose two explanations for the students’ positive perceptions. First, IWB use could have provided some interactive situations where students participated actively in learning. Second, the IWB could have provided students with opportunities to use specialized software that would help them learn academic content.

Challenges of IWB Use in Class

We asked both students and teachers about the challenges they encountered as well. Figure 9 depicts the major challenges for teachers, the most formidable being technical problems, cited by 70.6%: “… I’ve never seen anything that broke down so much … and you have to wait for the technician … he spends all his time fixing them …” (high school teacher). At 17.3%, the time spent working with the IWB was another major issue. It was viewed as a time-consuming tool, for many reasons:

- “… it takes up a lot of teaching time … you see, to learn how to use the IWB, I have to give up even more of my evenings and weekends …” (elementary school teacher).
- “… preparing lessons for the IWB … it really takes a lot of time … which I don’t have …” (high school teacher).
- “… I find that I have to fool with the Interactive whiteboard before every class … it takes too much time …” (high school teacher).
- “… learning how to use all the IWB features … it takes time …” (high school teacher).
- “… for me, it’s finding materials that takes up my time …” (high school teacher).

In addition, several teachers (9.6%) brought up the size of the screen: “… I have 32 students in my class … the screen is too small if you’re sitting at the back [of the class]” (high school teacher). Class management was mentioned by a few teachers (1.4%). Last came inadequate training (1.1%). For many teachers, the problem was not a lack of training, but rather a lack of time to learn how to use the IWB before trying it out with the students:

- “… I took some useful training sessions … but I didn’t have the time to really sit down in class and try it out … I need that … without my students around me …” (high school teacher).
- “… the training, it’s only part of the problem … what I would need is training in my classroom … that way I could be ready for my students …” (high school teacher).
In terms of how frequently they dealt with technical problems in class (Figure 10), 93.5% of the teachers felt that they “always” (23.6%) or “often” (69.9%) had such problems. Only 6.5% felt that they “sometimes” (2.9%), “rarely” (2.3%), or “never” (1.3%) did. Clearly, technical problems constitute the greatest challenge of IWB use in class.

These frequencies were confirmed by the results of the individual and group interviews:

- “… I have technical problems very often … and then I have to wait for the technician …” (elementary school teacher).
- “… there’s always something that needs fixing … it gets in the way of my teaching …” (high school teacher).
We also asked the teachers how many of the technical problems they managed to resolve on their own. Overall, the results show that the IWB incurred major and frequent technical problems that the teachers were usually unable to resolve by themselves with only 7.4% of the teachers reporting that they could resolve technical problems on their own.

In other words, 92.6% of the teachers had technical problems that required outside help, usually a technician. Thus, the great majority of them felt that they were more or less at the mercy of the technician—employed by the school board or the IWB provider—who had to come to their rescue: “… whenever there’s a problem … we have to wait for the technician … sometimes it takes weeks …” (high school teacher).

Due to the many technical problems, teachers (especially high school teachers) who used the IWB had to prepare two sets of lesson plans. Planning a lesson with the IWB already took up too much time, and on top of that, they needed a back-up lesson plan in case the IWB didn’t work: “… if the interactive whiteboard wasn’t working with a group … I have to make another lesson plan … this doubles the work … “ (high school teacher).

The students’ responses (Figure 11) were somewhat different, with a few similarities. For example, technical problems headed the list (33.5%): “… it usually doesn’t work … the teachers waste a lot of time installing it …” (high school student). Second came the small screen size (25.4%): “… the screen’s too small … my TV at home is bigger …” (high school student). This was a particular sore point for high school students, some of whom had a bigger TV screen at home for watching films and playing computer games.

Many students also complained that their teacher was inept at using the IWB (19.0%): “… even though it’s not always their fault … but it breaks anyway” (high school student). The problem appeared to be that the teachers were too often unable to resolve technical problems:

- “… my teacher can never fix it when there’s a problem … she always says she has to wait for the technician …” (high school student).
- “… the digital whiteboard is super complicated … my teachers can never get it to work … we have to wait for a technician …” (high school student).

Many students cited loss of motivation as a challenge (18.3%):

- “… at first, I liked it … but after a while … it got boring … a lot of students are practically asleep …” (high school student).
- “… it wasn’t interesting to look at hundreds of pages scrolling down …” (high school student).

At the bottom of the list (3.8%) was the lack of interactivity in the lessons when their teacher used the IWB: “… it’s monotonous … there’s only the teacher talking all alone … we students … don’t do anything …” (high school student). In other words, the vast majority of the teachers used the IWB as a digital projector and neglected the interactive features.
Conclusion

For the OECD (2015), technology represents the “very future” of education. Moreover, as technology becomes all-pervasive, it becomes increasingly vital for upcoming generations to acquire technology skills if they want to succeed professionally and socially. Being able to self-train, self-learn, and communicate via technology will be the *sine qua non* condition for adapting to and fully participating in societies that are in permanent flux. Learning with technology is therefore a key competency that will enable youth to succeed in all spheres of life.

The aim of this study was to identify how the IWB is used in Quebec schools as well as the associated benefits and challenges. Data were collected from 11,863 students and 1,131 teachers.

Despite the critical need to integrate technology into education, the results underscore that certain technology tools—such as the IWB, which gave the participating teachers substantial technical problems—may be excessively complicated and time-consuming to use. Nevertheless, the IWB has real pedagogical potential.

The IWB has been introduced en masse into schools across Quebec over the last five years. It appears that students appreciate having this technology in the classroom: 99.2% preferred the IWB over the traditional blackboard. However, whereas the large majority (73.6%) of teachers preferred the IWB over the traditional blackboard, a non-negligible percentage (26.4%) actually preferred the blackboard. Perhaps it was because the IWB was imposed on them. A mandatory new method or technology is palatable only when some degree of choice is involved. Self-determination theory (SDT, Deci & Ryan, 1985) provides some insight into the possible motivations of teachers who preferred the blackboard over the IWB.

That said, our results also show that slightly over half the teachers did not use the IWB regularly (48.2%), and that 51.8% used it “sometimes,” “rarely,” or even “never.” It may not be easy to persuade teachers to use the IWB more often in class.
The problem does not lie solely in the teachers’ uses of the IWB. The students had few opportunities to work with the IWB in class: only 4.0% were allowed to use it regularly in class.

Moreover, the teachers used the IWB primarily as a digital projector while neglecting the interactive features (1.4% of reported uses), which posed technical challenges. We propose that for the great majority of teachers, a simple electronic projector would be more suitable for teaching purposes, at far less cost and with a much larger screen. Furthermore, the IWB may represent a conflict for teachers who are reluctant to revert back to lecture-style teaching. Our results are fairly consistent with those of Khambari et al. (2014), who observed some conflict between open teaching approaches (also called student-centered learning, among others) and IWB use, often with lecture-style teaching.

Nonetheless, it is noteworthy that our results show that the IWB offers significant benefits for classroom use, including Internet access, visual teaching support, video presentation, motivation to learn, more effective learning, and efficient organization. We may therefore conclude that a judicious use of educational technology, accompanied by adequate training, could have positive impacts on academic outcomes. Furthermore, the impacts on the students in this study depended mainly on how the teacher used the IWB in class. Hence, despite the enormous educational potential, it remains up to teachers and students to take advantage of all that the IWB has to offer in order to realize that potential.

Overall, the results of this study show that the more students worked with the IWB, the more positive their perceptions of its impacts on their academic achievement, school motivation, concentration in class, and overall satisfaction at school. These are promising results, and the hope is that more than just 4.0% of teachers will venture into new territory and encourage their students to work with the IWB. There is an exciting new world of educational treasures to explore, and teachers who take the plunge will reap the rewards.

Clearly, technical problems pose a daunting challenge for teachers. Over 92.6% of the participating teachers reported technical problems that they were unable to resolve on their own. Other significant problems included the extra effort required—often on their own time—to learn how to use all the IWB features, the small screen size (especially for large high school classes), classroom management problems, and training issues. In short, classroom use of the IWB can be both time- and energy-consuming.

Hence, teachers need adequate technological and pedagogical support. The IWB should not be installed in classrooms until teachers are fully prepared for it. Teachers need pedagogical days so they can take individual or group training sessions to learn how to use all the IWB features and functions, especially the interactive aspects that foster student engagement. Many studies have demonstrated the effectiveness of hands-on technology training sessions as well as adequate technical and pedagogical support.

We cannot definitively conclude that the IWB has either negative or positive impacts on student outcomes. Only 3.9% of the participating teachers felt that the IWB could positively impact students’ academic grades. This does not mean that the other 96.1% felt that the IWB had negative impacts. What it means is that the vast majority of the teachers felt that the ways that they used the IWB did not positively impact students’ grades. They also felt that their uses of the
IWB had similar impacts, in many respects, to their uses of more traditional educational tools, such as the blackboard.

Because the vast majority of the teachers used the IWB as an electronic projector—which costs less, has a much larger screen, and entails fewer technical headaches—we believe that the 2011 imposition of the IWB on all of Quebec’s teachers was a hasty decision. It might have been wiser to provide the IWB only to teachers who were inclined to use it more often, and were ready to exploit its full potential.

Whether or not technology impacts educational outcomes may not be the right question to ask; instead, we could try to identify the conditions that foster positive impacts of technology on student engagement and academic outcomes. In assessing the potential of technology for learning, the central issue is how that potential can be realized. We believe that, regardless of the potential, effective use of technology tools such as the IWB depends on how teachers and students use them. The critical question then becomes how to tap that potential through reflective use.

References

Author

Thierry Karsenti, M.A., M.Ed., Ph.D. holds the Canada Research Chair on Technologies in Education. He is also a Full Professor at the University of Montreal. He is the director of CRIFPE (Research Center on Teachers and Teacher Education), which received the Canadian Education Association Whitworth Award for Best Education Research Center in Canada. Email: thierry.karsenti@umontreal.ca

This work is licensed under a Creative Commons Attribution 3.0 License.