Using a Wireless Electroencephalography Device to Evaluate E-Health and E-Learning Interventions

Tanya Mailhot, Patrick Lavoie, Marc-André Maheu-Cadotte, Guillaume Fontaine, Alexis Cournoyer, José Côté, France Dupuis, Thierry Karsenti, Sylvie Cossette

Background: Measuring engagement and other reactions of patients and health professionals to e-health and e-learning interventions remains a challenge for researchers.

Objective: The aim of this pilot study was to assess the feasibility and acceptability of using a wireless electroencephalography (EEG) device to measure affective (anxiety, enjoyment, relaxation) and cognitive (attention, engagement, interest) reactions of patients and healthcare professionals during e-health or e-learning interventions.

Methods: Using a wireless EEG device, we measured patient (n = 6) and health professional (n = 7) reactions during a 10-minute session of an e-health or e-learning intervention. The following feasibility and acceptability indicators were assessed and compared for patients and healthcare professionals: number of eligible participants who consented to participate, reasons for refusal, time to install and calibrate the wireless EEG device, number of participants who completed the full 10-minute sessions, participant comfort when wearing the device, signal quality, and number of observations obtained for each reaction. The wireless EEG readings were compared to participant self-rating of their reactions.

Results: We obtained at least 75% of possible observations for attention, engagement, enjoyment, and interest. EEG scores were similar to self-reported scores, but they varied throughout the sessions, which gave information on participants’ real-time reactions to the e-health/e-learning interventions. Results on the other indicators support the feasibility and acceptability of the wireless EEG device for both patients and professionals.

Discussion: Using the wireless EEG device was feasible and acceptable. Future studies must examine its use in other contexts of care and explore which components of the interventions affected participant reactions by combining wireless EEG and eye tracking.

Key Words: e-health • e-learning • electroencephalography • engagement • pilot study

Nursing Research, January/February 2018, Vol 67, No 1, 43–48

Physical inactivity, smoking, hypercaloric diet, and other unhealthy behaviors are priority targets for disease prevention and management (Cardiometabolic Risk Working Group: Executive Committee, 2011). To address these risk factors, patients must initiate changes in their behaviors, and healthcare professionals must support those changes (Garvey, Arathuzik, Miller, & Ard, 2016; The Emerging Risk Factors Collaboration, 2015). Over the last decade, an increasing number of Web-based e-health and e-learning interventions have been developed and tested for these purposes (Cook et al., 2008). For patients, e-health interventions provide a learning environment that can support behavior change (Wantland, Portillo, Holzemer, Slaughter, & McGhee, 2004). For healthcare professionals, e-learning can facilitate the acquisition of the knowledge and skills required to support patients in health behavior change (Cook et al., 2008).

However, recent studies have shown that the effectiveness of e-health and e-learning interventions is limited by dropout rates of 50%–80% (Cugelman, Thelwall, & Dawes, 2011; Krebs, Prochaska, & Rossi, 2010; Norman et al., 2007). A possible explanation for these numbers resides in the lack of user engagement, which is essential to sustain user participation and to achieve positive outcomes (Perski, Blandford, & Prochaska, 2005).
Evaluating E-Interventions Using Wireless EEG

Evaluating E-Interventions Using Wireless EEG
to evaluate affective and cognitive reactions after online inter-
results (Acharya, Hani, Cheek, Thirumala, & Tsuchida, 2016).
to mention the specialized training required to interpret the
traces while remaining completely still during the test, not
However, EEG devices require users to wear dozens of elec-
trons, for instance. Psychological engagement, on the other hand, is reflected in the mental activity of users
toward the learning goals, making it a more difficult construct
to measure. Both forms of engagement are closely linked
with other affective and cognitive reactions involved in
learning, including attention, interest, enjoyment, relaxation,
and anxiety.

Thus, evaluating user engagement and other affective
and cognitive reactions in e-health and e-learning interven-
tions is a top research priority (Michie, Yardley, West, Patrick,
& Greaves, 2017). Among the existing measurement methods,
electroencephalography (EEG) allows for real-time assess-
ment of electrical signals in various parts of the brain. It
can detect patterns of mental activity associated with affective
and cognitive reactions, including engagement (Li & Lu, 2009; Mampusti et al., 2011; Murugappan et al., 2008).
However, EEG devices require users to wear dozens of elec-
trodes while remaining completely still during the test, not
to mention the specialized training required to interpret the
results (Acharya, Hani, Cheek, Thirumala, & Tsuchida, 2016).
Beside EEG devices, other methods are more commonly used
to evaluate affective and cognitive reactions after online inter-
ventions. These methods involve users’ self-rating of their
reactions on visual analog scales (VAS) but do not provide
real-time assessments during the interventions (Funke & Reips,
2012; Kuhlmann, Reips, Wienert, & Lippke, 2016; Reips &
Funke, 2008).

In response to these challenges, wireless EEG devices
have been developed. Although they cannot be substituted
to full-scale EEG for diagnostic purposes, these devices are
cheaper and use less electrodes, which reduces the time
required for installation and allows users to move during mea-
surement. The devices come with interpretation software
products that compute real-time scores for different affective
and cognitive reactions. Up to now, wireless EEGs’ tracings
have been compared to full-scale EEGs and their validity was
supported (Badcock et al., 2015), but the validity of the soft-
ware interpretations remains to be scrutinized. Nevertheless,
wireless EEG devices are a promising and practical method
to measure users’ real-time reactions that could be used to eval-
uate e-health or e-learning interventions. Accordingly, the aim
of this pilot study was to assess the feasibility and acceptability
of using a wireless EEG device to measure affective and cogni-
tive reactions of patients and healthcare professionals during
e-health or e-learning interventions.

METHODS

This prospective pilot study was conducted between April and
May 2017 in a Canadian cardiology hospital. The study was
approved by the institutional review board (#2017-2134) and registered at the ISRCTN registry (https://www.isrctn.
com; ISRCTN12825237).

Participants

Based on anticipated recruitment rate, we aimed to approach
20 eligible participants over 2 months. Eligible participants
were either patients expecting discharge from a coronary care
unit or professionals from the same setting. Written consent
was obtained from all participants.

Procedure

Upon enrolment, participants completed a sociodemographic
questionnaire, including age, gender, and education. A research
assistant then installed and calibrated a wireless EEG device
on their head. Participants were instructed to start the first
session of an e-health or e-learning intervention on a laptop
computer. Patients completed the procedure in their hospi-
tal room, and healthcare professionals completed it in a
closed office during a work shift. These conditions reflected
the course of events on the unit. There was a possibility that
participants could be interrupted to receive or provide regular
care at any time during the sessions. If they had not been
interrupted after 10 minutes, the research assistant ended
the experiment and asked participants to complete a ques-
tionnaire about their reactions to the intervention.

E-Health and E-Learning Interventions

Two interventions were used—one for patients and one for
healthcare professionals. Patients navigated through the first
session of TAVIE@COEUR (Cossette et al., 2017), an e-health
intervention designed to promote adherence to cardiovas-
cular medication. Professionals viewed the first session of
MOTIV@COEUR (Fontaine et al., 2016), an e-learning inter-
vention on motivational interviewing. A typical timeline of
the first 10 minutes of each intervention with actions assumed
to promote behavioral engagement (clicks and questions) is
presented in Figure 1. In both online interventions, participants
navigated through videos of a nurse providing topic-relevant
explanations (“N” in Figure 1). They had to click on “continue”
bUTTONs to move from one video to the next.

Patients watched videos of a nurse addressing the impor-
tance of taking cardiovascular medication as prescribed
(3 segments × 1 minute/segment) and on behaviors related
to medication (3 segments × 1 minute/segment). They also
viewed a video of a patient sharing his experience with car-
diovascular medication (2.5 minutes). On two occasions,
they had to answer yes/no questions; they also had to com-
plete a questionnaire on drugs they were taking at home
(“Q” in Figure 1), and they were presented with a short text
on these drugs (“T” in Figure 1).

In the first video watched by healthcare professionals
(2 minutes), a nurse introduced brief motivational interviewing
and the learning objectives for MOTIV@COEUR. In the second video (11 minutes), the nurse presented the theoretical basis of motivational interviewing. On three occasions, videos showed text to emphasize the nurse’s explanations ("T" in Figure 1).

Data Collection

Emotive and Cognitive Reactions Participant reactions were measured with a wireless EEG device and VAS. The EPOC+ wireless EEG device (Figure 2) from Emotiv (San Francisco, CA) was used. The EPOC+ uses 14 electrodes that are positioned per the 10–20 international positioning system for EEGs (Acharya et al., 2016). Interpretation software for the device (MyEmotiv) computes real-time scores for six affective and cognitive reactions: anxiety, attention, engagement, enjoyment, interest, and relaxation. Scores range from 0 to 100, with higher scores indicating higher-intensity reactions.

During the sessions, participant scores were recorded every minute for each of the six reactions. Therefore, a total of 60 scores per participant (10 scores × 6 reactions) was expected. Of note, the software requires a sufficient signal quality to compute the reactions, with some reactions requiring a higher signal quality than others. Accordingly, it was possible that the software would not provide scores for some reactions if the signal quality was not sufficient. Because there was no previous report of the number of scores to expect, we estimated that obtaining 75% of possible scores was acceptable.

Immediately after the session, participants rated the degree to which they experienced the six affective and cognitive reactions measured by the wireless EEG device by tracing an X on a 10-cm VAS. The distance from the beginning of the VAS to the X was measured and transformed into a 0–100 score (e.g., 67 mm = 67 points).

Feasibility and Acceptability Indicators drawn from the literature on pilot studies (Feeley & Cossette, 2016) were assessed and compared for patients and healthcare professionals: number of eligible participants who consented to participate, reasons for refusal, time to install and calibrate the wireless EEG device, number of participants who completed the full 10-minute sessions, participants’ comfort when wearing the device, signal quality, and number of observations obtained for each reaction. A VAS was also used to measure participant comfort while wearing the wireless EEG device.

Analyses Data were summarized with descriptive statistics, including frequency, percentage, mean, and standard deviation (or median and minimum/maximum value if normality of the distribution was not achieved). Because the sample size was small, groups were compared on the basis of visual inspection.
Although the validity and reliability of the software interpretation was beyond the scope of this pilot study, the participant scores on the reactions for which we obtained at least 75% of possible observations were graphed. The curves from the graphed scores were compared to participant self-rating of their reactions during the intervention. A search for differences in trends among patients’ and professionals’ scores was performed; as they had been exposed to different interventions, different trends were expected.

RESULTS
During the study period, 18 eligible participants (10 patients and 8 professionals) were approached. Of those, 13 were recruited and enrolled (six patients and seven professionals). The recruitment rates were high at 60% for patients and 87.5% for professionals. Reasons for refusal included being too tired or not interested. On average, patients were 58 years old (range: 53–69); healthcare professionals were 36 years old (range: 26–54). Patients identified mostly as male (n = 4, 67%), and half had completed a college education (n = 3, 50%). Healthcare professionals identified mostly as female (n = 4, 57%), were all nurses, and all had completed a university degree (n = 7, 100%).

Feasibility and acceptability results are reported in Table 1. For both groups, the median time to install and calibrate the wireless EEG device was shorter or equal to other reports (2–5 minutes; Harrison, 2013); it took longer to install the device on patients than on professionals. All participants completed at least 7 minutes of the sessions. Approximately half of the patients (n = 3/6, 50%) and the professionals (n = 4/7, 57%) completed the full 10-minute sessions. Patients were interrupted mostly because a healthcare professional walked into their room; healthcare professionals were interrupted because one of their assigned patients required care.

Comfort scores were generally high and similar for both groups. Comfort scores for participants who did (Mdn = 8.7) and did not (Mdn = 7.9) complete the sessions were also similar. Nevertheless, visual inspection of the comfort scores revealed that patients and professionals who did not complete the sessions reported higher comfort scores. Thus, it appeared that participants ended the sessions because of contextual factors and not because of uncomfortableness with the wireless EEG device. However, healthcare professionals who completed the sessions reported slightly lower comfort scores than those who did not. This could mean that wearing the wireless EEG device for a longer period increases discomfort. Signal quality was generally high throughout the sessions. We were unable to obtain any observations from one healthcare professional, even if the signal quality was moderate at 85% during the experiment. This participant was removed from the subsequent parts of the analyses.

In the protocol, we planned to calculate the number of observations obtained over 10 minutes. Half of participants stopped the sessions after 7 minutes. Therefore, most of the missing observations in the last 3 minutes of the experiment were due to the interruption of the procedure and not to the wireless EEG device. Thus, the first 7 minutes of the experiment were used for analyses. As shown in Table 1, at least 75% of possible observations for professionals’ attention, engagement, enjoyment, and interest were obtained. This threshold was not reached for anxiety and relaxation. Results for patients were similar, except for enjoyment, which approached but did not reach the 75% threshold. However, the threshold was reached with healthcare professionals, and we decided to keep enjoyment for further analyses.

Affective and cognitive reactions are presented in Figure 3. Trends in patient and professional scores on attention, engagement, enjoyment, and interest for the first 7 minutes of the

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients (n = 6)</th>
<th>Professionals (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install/calibrate (minutes)</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Signal quality</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>Comfort (score)</td>
<td>8.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Completed session</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Did not complete session</td>
<td>8.8</td>
<td>7.7</td>
</tr>
<tr>
<td>Observations (first 7 minutes)</td>
<td>j = number of observations</td>
<td>j = number of observations</td>
</tr>
<tr>
<td>Anxiety</td>
<td>11 (26.2)</td>
<td>20 (47.6)</td>
</tr>
<tr>
<td>Attention</td>
<td>39 (92.3)</td>
<td>42 (100.0)</td>
</tr>
<tr>
<td>Engagement</td>
<td>37 (88.1)</td>
<td>36 (85.7)</td>
</tr>
<tr>
<td>Enjoyment</td>
<td>31 (73.8)</td>
<td>41 (97.6)</td>
</tr>
<tr>
<td>Interest</td>
<td>40 (95.2)</td>
<td>42 (100.0)</td>
</tr>
<tr>
<td>Relaxation</td>
<td>24 (57.1)</td>
<td>24 (57.1)</td>
</tr>
</tbody>
</table>

Note. Results are presented for the first 7 minutes, because approximately half of the participants did not complete an entire 10-minute session. There were 42 possible observations for both patients and professionals (7 minutes × 6 patients or professionals). j = number of observations; Mdn = median. *Based on data from seven patients and six professionals.
experiment were similar to the VAS scores measured after the experiment. On the EEG and the VAS, professionals scored higher than patients. As expected, the wireless EEG scores varied throughout the sessions, providing real-time information on participant reaction; this variation was not reflected in the single VAS measures obtained after the intervention. The difference in patient and professional curves reflects that they were exposed to different interventions and suggests that the wireless EEG device provides a measure that was reactive to the interventions, which supports its potential.

DISCUSSION

These results support the feasibility and the acceptability of using a wireless EEG device to evaluate e-health and e-learning interventions with hospitalized patients and healthcare professionals. Recruitment rates were high, installation and calibration of the device were feasible within a reasonable time, participants were comfortable, and the device yielded the expected number of observations for most reactions. Data obtained with the wireless EEG device are promising; they show variations in the intensity of reactions that are known to affect the outcomes of e-health and e-learning interventions. The strengths of this exploratory study include participants' blinding to their EEG scores and the absence of missing data for the VAS scores. Feasibility and acceptability were assessed in naturalistic clinical conditions, thereby increasing the applicability of the results to real-world settings and future nursing research. However, this is also a limit of the study: Some sessions were interrupted by clinical events on the unit, resulting in missing EEG data. Although appropriate for a pilot study, the sample size was small, and we only approached 18 out of the possible 20 participants because of administrative issues. It is also important to note that all participants in this study came from one setting and were clinically stable—patients were expecting discharge, and professionals were assumed to be healthy.

Conclusions

Considering the strengths and limitations of this study, the results suggest that the use of wireless EEG device warrants further investigation. The next step would be to examine what components of the interventions affected participant reactions. This could be achieved by combining wireless EEG and eye-tracking measurements with a larger sample of patients and professionals. Such studies could lead to adjustments of e-health and e-learning interventions to increase their effectiveness regarding behavior change and knowledge/skill acquisition. Also, it appears relevant to test the wireless EEG device in other care settings and with patients who present with different clinical states.

FIGURE 3. Descriptive results for attention, engagement, enjoyment, and interest. Dotted lines represent the mean scores obtained with the wireless EEG device at each time point. Full lines represent the mean VAS score obtained after the online interventions. Scores for professionals are presented in blue; patient scores are in black.

REFERENCES

Data obtained with the wireless EEG device are promising.

Read and Send Letters to the Editor

Nursing Research now publishes Letters to the Editor in the print journal. To submit a Letter to the Editor you should login to Editorial Manager here: http://www.editorialmanager.com/nres/default.aspx and choose article type ‘Letter to the Editor.’ Authors of articles referenced in the Letter will be given the opportunity to respond.

Previous Letters published can be found on the publisher’s website: http://journals.lww.com/nursingresearchonline/ Pages/LetterstotheEditor.aspx.